ON HIGHER MOMENTS OF HECKE EIGENVALUES ATTACHED TO CUSP FORMS

被引:0
作者
Hua, Guodong [1 ]
机构
[1] Weinan Normal Univ, Sch Math & Stat, Chaoyang St, Weinan 714099, Shaanxi, Peoples R China
关键词
Hecke eigenform; Fourier coefficient; Rankin-Selberg L-function; FOURIER COEFFICIENTS; PLANCHEREL MEASURES; EULER PRODUCTS; CLASSIFICATION; FUNCTORIALITY; SERIES; SUMS; 4TH;
D O I
10.21136/CMJ.2022.0330-21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f, g and h be three distinct primitive holomorphic cusp forms of even integral weights k(1), k(2) and k(3) for the full modular group Gamma = SL(2, Z), respectively, and let lambda(f)(n), lambda(g)(n) and lambda(h)(n) denote the nth normalized Fourier coefficients of f, g and h, respectively. We consider the cancellations of sums related to arithmetic functions lambda(g)(n), lambda(h)(n) twisted by lambda(f)(n) and establish the following results: Sigma(n <= x)lambda(f)(n)lambda(g)(n)(i)lambda(h)(n)(j) << (f,g,h,epsilon) x(1-1/2i+j + epsilon) for any epsilon > 0, where 1 <= i <= 2, i >= 5 are any fixed positive integers.
引用
收藏
页码:1055 / 1064
页数:10
相关论文
共 34 条
[1]  
[Anonymous], 1974, PUBL MATH-PARIS, V43, P273, DOI [DOI 10.1007/BF02684373.MR0340258(49#5013, 10.1007/BF02684373]
[2]   LEVEL-RAISING AND SYMMETRIC POWER FUNCTORIALITY, III [J].
Clozel, Laurent ;
Thorne, Jack A. .
DUKE MATHEMATICAL JOURNAL, 2017, 166 (02) :325-402
[3]   Level raising and symmetric power functoriality, II [J].
Clozel, Laurent ;
Thorne, Jack A. .
ANNALS OF MATHEMATICS, 2015, 181 (01) :303-359
[4]   Level-raising and symmetric power functoriality, I [J].
Clozel, Laurent ;
Thorne, Jack A. .
COMPOSITIO MATHEMATICA, 2014, 150 (05) :729-748
[5]  
Fomenko OM., 1999, J MATH SCI N Y, V95, P2295, DOI [10.1007/BF02172473, DOI 10.1007/BF02172473]
[6]  
GELBART S, 1978, ANN SCI ECOLE NORM S, V11, P471
[7]  
Hecke E., 1927, ABH MATH SEM HAMBURG, V5, P199
[8]   On the Rankin-Selberg problem [J].
Huang, Bingrong .
MATHEMATISCHE ANNALEN, 2021, 381 (3-4) :1217-1251
[9]  
Iwaniec H., 2004, AM MATH SOC C PUBLIC
[10]   RANKIN-SELBERG CONVOLUTIONS [J].
JACQUET, H ;
PIATETSKIISHAPIRO, II ;
SHALIKA, JA .
AMERICAN JOURNAL OF MATHEMATICS, 1983, 105 (02) :367-464