Online model selection based on the variational bayes

被引:257
|
作者
Sato, M [1 ]
机构
[1] ATR Int, Div Informat Sci, Kyoto 6190288, Japan
[2] Japan Sci & Technol Corp, CREST, Kyoto 6190288, Japan
关键词
D O I
10.1162/089976601750265045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Bayesian framework provides a principled way of model selection. This framework estimates a probability distribution over an ensemble of models, and the prediction is done by averaging over the ensemble of models. Accordingly, the uncertainty of the models is taken into account, and complex models with more degrees of freedom are penalized. However, integration over model parameters is often intractable, and some approximation scheme is needed. Recently, a powerful approximation scheme, called the variational bayes (VB) method, has been proposed. This approach defines the free energy for a trial probability distribution, which approximates a joint posterior probability distribution over model parameters and hidden variables. The exact maximization of the free energy gives the true posterior distribution. The VB method uses factorized trial distributions. The integration over model parameters can be done analytically, and an iterative expectation-maximization-like algorithm, whose convergence is guaranteed, is derived. In this article, we derive an online version of the VB algorithm and prove its convergence by showing that it is a stochastic approximation for finding the maximum of the free energy. By combining sequential model selection procedures, the online VB method provides a fully online learning method with a model selection mechanism. In preliminary experiments using synthetic data, the online VB method was able to adapt the model structure to dynamic environments.
引用
收藏
页码:1649 / 1681
页数:33
相关论文
共 50 条
  • [1] Hierarchical model selection for NGnet based on variational Bayes inference
    Yoshimoto, J
    Ishii, S
    Sato, M
    ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 661 - 666
  • [2] Consistency of variational Bayes inference for estimation and model selection in mixtures
    Cherief-Abdellatif, Badr-Eddine
    Alquier, Pierre
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 2995 - 3035
  • [3] A variational Bayes approach to variable selection
    Ormerod, John T.
    You, Chong
    Mueller, Samuel
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 3549 - 3594
  • [4] Sparse linear mixed model selection via streamlined variational Bayes
    Degani, Emanuele
    Maestrini, Luca
    Toczydlowska, Dorota
    Wand, Matt P.
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (02): : 5182 - 5225
  • [5] Variational inference based bayes online classifiers with concept drift adaptation
    Thi Thu Thuy Nguyen
    Tien Thanh Nguyen
    Liew, Alan Wee-Chung
    Wang, Shi-Lin
    PATTERN RECOGNITION, 2018, 81 : 280 - 293
  • [6] USING ONLINE MODEL COMPARISON IN THE VARIATIONAL BAYES FRAMEWORK FOR ONLINE UNSUPERVISED VOICE ACTIVITY DETECTION
    Cournapeau, David
    Watanabe, Shinji
    Nakamura, Atsushi
    Kawahara, Tatsuya
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 4462 - 4465
  • [7] A VARIATIONAL BAYES BETA MIXTURE MODEL FOR FEATURE SELECTION IN DNA METHYLATION STUDIES
    Ma, Zhanyu
    Teschendorff, Andrew E.
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2013, 11 (04)
  • [8] Recursive Identification of the Hammerstein Model Based on the Variational Bayes Method
    Dokoupil, Jakub
    Vaclavek, Pavel
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 1586 - 1591
  • [9] Recursive Identification of the ARARX Model Based on the Variational Bayes Method
    Dokoupil, Jakub
    Vaclavek, Pavel
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4215 - 4222
  • [10] Online Unsupervised Classification With Model Comparison in the Variational Bayes Framework for Voice Activity Detection
    Cournapeau, David
    Watanabe, Shinji
    Nakamura, Atsushi
    Kawahara, Tatsuya
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (06) : 1071 - 1083