Regulation of sphingolipid biosynthesis in the endoplasmic reticulum via signals from the plasma membrane in budding yeast

被引:10
作者
Ishino, Yuko [1 ]
Komatsu, Nao [1 ]
Sakata, Ken-taro [1 ]
Yoshikawa, Daichi [1 ]
Tani, Motohiro [2 ]
Maeda, Tatsuya [3 ]
Morishige, Kanta [1 ]
Yoshizawa, Koushiro [1 ]
Tanaka, Naotaka [1 ]
Tabuchi, Mitsuaki [1 ]
机构
[1] Kagawa Univ, Fac Agr, Dept Appl Biol Sci, Miki, Kagawa 7610795, Japan
[2] Kyushu Univ, Fac Sci, Dept Chem, Fukuoka, Japan
[3] Hamamatsu Univ Sch Med, Dept Biol, Hamamatsu, Shizuoka, Japan
关键词
-1 programmed ribosomal frameshifting; ceramide; Saccharomyces cerevisiae; sphingolipid; TOR complex; COMPLEX; 2; TORC2; SACCHAROMYCES-CEREVISIAE; CERAMIDE SYNTHASE; PROTEINS SLM1; KINASE YPK1; PHOSPHORYLATION; ACTIVATION; STRESS; SCREEN; TSC13P;
D O I
10.1111/febs.16189
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Saccharomyces cerevisiae LIP1 encodes a regulatory subunit that forms a complex with the ceramide synthase catalytic subunits, Lag1/Lac1, which is localized on the membrane of endoplasmic reticulum. To understand the underlying regulatory mechanism of sphingolipid biosynthesis, we generated strains upon replacing the chromosomal LIP1 promoter with a Tet-off promoter, which enables the expression in Dox-dependent manner. The lip1-1 strain, obtained through the promoter substitution, exhibits severe growth inhibition and remarkable decrease in sphingolipid synthesis in the presence of Dox. Using this strain, we investigated the effect of a decrease in ceramide synthesis on TOR complex 2 (TORC2)-Ypk1 signaling, which senses the complex sphingolipid level at the plasma membrane and promotes sphingolipid biosynthesis. In lip1-1 cells, Ypk1 was activated via both upstream kinases, TORC2 and yeast PDK1 homologues, Pkh1/2, thereby inducing hyperphosphorylation of Lag1, but not of another Ypk1-substrate, Orm1, which is a known negative regulator of the first step of sphingolipid metabolism, in the presence of Dox. Therefore, our data suggest that the metabolic enzyme activities at each step of the sphingolipid biosynthetic pathway are controlled through a fine regulatory mechanism.
引用
收藏
页码:457 / 472
页数:16
相关论文
共 46 条
[1]   Regulation of ceramide biosynthesis by TOR complex 2 [J].
Aronova, Sofia ;
Wedaman, Karen ;
Aronov, Pavel A. ;
Fontes, Kristin ;
Ramos, Karmela ;
Hammock, Bruce D. ;
Powers, Ted .
CELL METABOLISM, 2008, 7 (02) :148-158
[2]   Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use [J].
Atkins, John F. ;
Loughran, Gary ;
Bhatt, Pramod R. ;
Firth, Andrew E. ;
Baranov, Pavel V. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (15) :7007-7078
[3]   Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton [J].
Audhya, A ;
Loewith, R ;
Parsons, AB ;
Gao, L ;
Tabuchi, M ;
Zhou, HL ;
Boone, C ;
Hall, MN ;
Emr, SD .
EMBO JOURNAL, 2004, 23 (19) :3747-3757
[4]   The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2Δ mutant [J].
Beeler, T ;
Bacikova, D ;
Gable, K ;
Hopkins, L ;
Johnson, C ;
Slife, H ;
Dunn, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (46) :30688-30694
[5]   Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis [J].
Berchtold, Doris ;
Piccolis, Manuele ;
Chiaruttini, Nicolas ;
Riezman, Isabelle ;
Riezman, Howard ;
Roux, Aurelien ;
Walther, Tobias C. ;
Loewith, Robbie .
NATURE CELL BIOLOGY, 2012, 14 (05) :542-U200
[6]   Sphingolipid Homeostasis in the Endoplasmic Reticulum and Beyond [J].
Breslow, David K. .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2013, 5 (04) :1-16
[7]   Membranes in Balance: Mechanisms of Sphingolipid Homeostasis [J].
Breslow, David K. ;
Weissman, Jonathan S. .
MOLECULAR CELL, 2010, 40 (02) :267-279
[8]   Orm family proteins mediate sphingolipid homeostasis [J].
Breslow, David K. ;
Collins, Sean R. ;
Bodenmiller, Bernd ;
Aebersold, Ruedi ;
Simons, Kai ;
Shevchenko, Andrej ;
Ejsing, Christer S. ;
Weissman, Jonathan S. .
NATURE, 2010, 463 (7284) :1048-U65
[9]   A general computational model for predicting ribosomal frameshifts in genome sequences [J].
Byun, Yanga ;
Moon, Sanghoon ;
Han, Kyungsook .
COMPUTERS IN BIOLOGY AND MEDICINE, 2007, 37 (12) :1796-1801
[10]   Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast [J].
Casamayor, A ;
Torrance, PD ;
Kobayashi, T ;
Thorner, J ;
Alessi, DR .
CURRENT BIOLOGY, 1999, 9 (04) :186-197