Adaptive metric kernel regression

被引:0
作者
Goutte, C [1 ]
Larsen, J [1 ]
机构
[1] Tech Univ Denmark, Dept Math Modeling, DK-2800 Lyngby, Denmark
来源
NEURAL NETWORKS FOR SIGNAL PROCESSING VIII | 1998年
关键词
D O I
10.1109/NNSP.1998.710648
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel smoothing is a widely used non-parametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this contribution, we propose an algorithm that adapts the input metric used in multivariate regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms the standard approach.
引用
收藏
页码:184 / 193
页数:10
相关论文
empty
未找到相关数据