机构:
Tech Univ Denmark, Dept Math Modeling, DK-2800 Lyngby, DenmarkTech Univ Denmark, Dept Math Modeling, DK-2800 Lyngby, Denmark
Goutte, C
[1
]
Larsen, J
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Denmark, Dept Math Modeling, DK-2800 Lyngby, DenmarkTech Univ Denmark, Dept Math Modeling, DK-2800 Lyngby, Denmark
Larsen, J
[1
]
机构:
[1] Tech Univ Denmark, Dept Math Modeling, DK-2800 Lyngby, Denmark
来源:
NEURAL NETWORKS FOR SIGNAL PROCESSING VIII
|
1998年
关键词:
D O I:
10.1109/NNSP.1998.710648
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Kernel smoothing is a widely used non-parametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this contribution, we propose an algorithm that adapts the input metric used in multivariate regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms the standard approach.