Spinor-valued -spaces and representations of Spin

被引:0
|
作者
Van Lancker, Peter [1 ]
机构
[1] Univ Ghent, Dept Math Anal, Clifford Res Grp, B-9000 Ghent, Belgium
关键词
Hypercomplex analysis; Representations; Riesz transforms; Spin groups; Sobolev spaces; CONFORMALLY INVARIANT POWERS; CLIFFORD ANALYSIS; INTERTWINING-OPERATORS; INEQUALITIES; SPHERE;
D O I
10.1016/j.jmaa.2014.09.066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the L-2-spaces of spinor-valued functions on Sm-1 provide models for the unitary principal series representations of Spin-(+)(1, m) which are characterized by the feature that they contain the fundamental spinor representation(s) of Spin(m). The novelty of our approach is that we use tools characteristic of hypercomplex analysis: the group Spin(+)(1, m) is realized as a group of Vahlen matrices and the Harish-Chandra modules of such representations are expressed in terms of spherical monogenics which generalize the classical spherical harmonics. By switching to the framework of hypercomplex analysis on the sphere we are able to extend (part of) the well-known results for the (scalar) spherical principal series representations of SO+(1, m) to the spinor setting. In the process we introduce a Clifford algebra-valued Riesz transform on the sphere. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:253 / 282
页数:30
相关论文
共 50 条
  • [1] Tensor- and spinor-valued random fields with applications to continuum physics and cosmology
    Malyarenko, Anatoliy
    Ostoja-Starzewski, Martin
    PROBABILITY SURVEYS, 2023, 20 : 1 - 86
  • [2] Motivic Galois representations valued in Spin groups
    Tang, Shiang
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2021, 33 (01): : 197 - 221
  • [3] Spinor modules for Hamiltonian loop group spaces
    Loizides, Yiannis
    Meinrenken, Eckhard
    Song, Yanli
    JOURNAL OF SYMPLECTIC GEOMETRY, 2020, 18 (03) : 889 - 937
  • [4] Boundary representations for families of representations of operator algebras and spaces
    Dritschel, MA
    Mccullough, SA
    JOURNAL OF OPERATOR THEORY, 2005, 53 (01) : 159 - 167
  • [5] Domain representations of topological spaces
    Blanck, J
    THEORETICAL COMPUTER SCIENCE, 2000, 247 (1-2) : 229 - 255
  • [6] Operator valued hardy spaces - Introduction
    Mei, Tao
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 188 (881) : 1 - +
  • [7] Vector-valued Sobolev spaces based on Banach function spaces
    Evseev, Nikita
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 211
  • [8] Vector-valued Sobolev spaces based on Banach function spaces
    Evseev, Nikita
    Nonlinear Analysis, Theory, Methods and Applications, 2021, 211
  • [9] Vector-Valued Local Approximation Spaces
    Hytonen, Tuomas
    Merikoski, Jori
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (02) : 299 - 320
  • [10] Sobolev spaces of vector-valued functions
    Caamano, Ivan
    Jaramillo, Jesus A.
    Prieto, Angeles
    Ruiz de Alarcon, Alberto
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 115 (01)