Effect of hydrogen on catalyst nanoparticles in carbon nanotube growth

被引:61
作者
Behr, Michael J. [1 ]
Gaulding, E. Ashley [1 ]
Mkhoyan, K. Andre [1 ]
Aydil, Eray S. [1 ]
机构
[1] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
CHEMICAL-VAPOR-DEPOSITION; OPTICAL-EMISSION SPECTROSCOPY; PLASMAS; NANOSTRUCTURES; NANOFIBERS; PARTICLES; DIAMOND; FILMS;
D O I
10.1063/1.3467971
中图分类号
O59 [应用物理学];
学科分类号
摘要
The structures of carbon nanotubes grown from catalytic nanoparticles via plasma-enhanced chemical vapor deposition in CH(4)/H(2) mixtures show a strong dependence on the H(2)-to-CH(4) ratio in the feed gas. A suite of characterization techniques, including optical emission, infrared, and Raman spectroscopies combined with convergent-beam and selected-area electron diffraction, and high-resolution (scanning) transmission electron microscopy imaging were used to systematically investigate the interrelation among plasma gas phase composition, catalysts morphology, catalyst structure, and carbon nanotube structure. Hydrogen plays a critical role in determining the final carbon nanotube structure through its effect on the catalyst crystal structure and morphology. At low H(2)-to-CH(4) ratios (similar to 1), iron catalyst nanoparticles are converted to Fe(3)C and well-graphitized nanotubes grow from elongated Fe(3)C crystals. High (>5) H(2)-to-CH(4) ratios in the feed gas result in high hydrogen concentrations in the plasma and strongly reducing conditions, which prevents conversion of Fe to Fe(3)C. In the latter case, poorly-graphitized nanofibers grow from ductile bcc iron nanocrystals that are easily deformed into tapered nanocrystals that yield nanotubes with thick walls. (C) 2010 American Institute of Physics. [doi : 10.1063/1.3467971]
引用
收藏
页数:8
相关论文
共 33 条
[1]   Abstraction of atomic hydrogen by atomic deuterium from an amorphous hydrogenated silicon surface [J].
Agarwal, S ;
Takano, A ;
van de Sanden, MCM ;
Maroudas, D ;
Aydil, ES .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (23) :10805-10816
[2]  
[Anonymous], 2009, Transmission Electron Microscopy: A Textbook for Materials Science
[3]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[4]   Catalyst rotation, twisting, and bending during multiwall carbon nanotube growth [J].
Behr, Michael J. ;
Mkhoyan, K. Andre ;
Aydil, Eray S. .
CARBON, 2010, 48 (13) :3840-3845
[5]   Factors determining properties of multi-walled carbon nanotubes/fibres deposited by PECVD [J].
Bell, M. S. ;
Teo, K. B. K. ;
Milne, W. I. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (08) :2285-2292
[6]   Structure and phase composition of a catalyst for carbon nanotiber formation [J].
Blank, V. D. ;
Alshevskiy, Yu. L. ;
Zaitsev, A. I. ;
Kazennov, N. V. ;
Perezhogin, I. A. ;
Kulnitskiy, B. A. .
SCRIPTA MATERIALIA, 2006, 55 (11) :1035-1038
[7]   Growth of vertically aligned carbon nanofibers by low-pressure inductively coupled plasma-enhanced chemical vapor deposition [J].
Caughman, JBO ;
Baylor, LR ;
Guillorn, MA ;
Merkulov, VI ;
Lowndes, DH ;
Allard, LF .
APPLIED PHYSICS LETTERS, 2003, 83 (06) :1207-1209
[8]   Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition [J].
Chhowalla, M ;
Teo, KBK ;
Ducati, C ;
Rupesinghe, NL ;
Amaratunga, GAJ ;
Ferrari, AC ;
Roy, D ;
Robertson, J ;
Milne, WI .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5308-5317
[9]   OPTICAL-EMISSION SPECTROSCOPY OF REACTIVE PLASMAS - A METHOD FOR CORRELATING EMISSION INTENSITIES TO REACTIVE PARTICLE DENSITY [J].
COBURN, JW ;
CHEN, M .
JOURNAL OF APPLIED PHYSICS, 1980, 51 (06) :3134-3136
[10]   Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor [J].
Delzeit, L ;
McAninch, I ;
Cruden, BA ;
Hash, D ;
Chen, B ;
Han, J ;
Meyyappan, M .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (09) :6027-6033