MULTIPLE SOLUTIONS FOR A FRACTIONAL p-LAPLACIAN EQUATION WITH SIGN -CHANGING POTENTIAL

被引:0
作者
Ambrosio, Vincenzo [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cinthia, I-80126 Naples, Italy
关键词
Fractional p-Laplacian; sign-changing potential; fountain theorem; SCHRODINGER-EQUATION; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a variant of the fountain Theorem to prove the existence of infinitely many weak solutions for the fractional p-Laplace equation (-Delta)(p)(s)u broken vertical bar V(x)vertical bar u vertical bar(p-2)u = f (x, u) in R-N, where s is an element of(0, 1), p >= 2, N >= 2, (-Delta)(p)(s) is the fractional p -Laplace operator, the nonlinearity f is p-superlinear at infinity and the potential V(x) is allowed to be sign-hanging.
引用
收藏
页数:12
相关论文
共 19 条
[11]  
Iannizzotto A., 2015, ADV CALC VA IN PRESS
[12]   On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN [J].
Jeanjean, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :787-809
[13]   Fractional Schrodinger equation [J].
Laskin, N .
PHYSICAL REVIEW E, 2002, 66 (05) :7-056108
[14]   Fractional quantum mechanics and Levy path integrals [J].
Laskin, N .
PHYSICS LETTERS A, 2000, 268 (4-6) :298-305
[15]   Fractional eigenvalues [J].
Lindgren, Erik ;
Lindqvist, Peter .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) :795-826
[16]   Ground state solutions for nonlinear fractional Schrodinger equations in RN [J].
Secchi, Simone .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (03)
[17]  
Torres C., 2014, ARXIV14123392
[18]   Multiplicity of solutions for a class of semilinear Schrodinger equations with sign-changing potential [J].
Zhang, Qingye ;
Xu, Bin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) :834-840
[19]   Variant fountain theorems and their applications [J].
Zou, W .
MANUSCRIPTA MATHEMATICA, 2001, 104 (03) :343-358