MULTIPLE SOLUTIONS FOR A FRACTIONAL p-LAPLACIAN EQUATION WITH SIGN -CHANGING POTENTIAL

被引:0
作者
Ambrosio, Vincenzo [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cinthia, I-80126 Naples, Italy
关键词
Fractional p-Laplacian; sign-changing potential; fountain theorem; SCHRODINGER-EQUATION; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a variant of the fountain Theorem to prove the existence of infinitely many weak solutions for the fractional p-Laplace equation (-Delta)(p)(s)u broken vertical bar V(x)vertical bar u vertical bar(p-2)u = f (x, u) in R-N, where s is an element of(0, 1), p >= 2, N >= 2, (-Delta)(p)(s) is the fractional p -Laplace operator, the nonlinearity f is p-superlinear at infinity and the potential V(x) is allowed to be sign-hanging.
引用
收藏
页数:12
相关论文
共 19 条
[2]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[3]  
Bartsch T, 2005, HBK DIFF EQUAT STATI, V2, P1, DOI 10.1016/S1874-5733(05)80009-9
[4]   Ground state solutions of scalar field fractional Schrodinger equations [J].
Bisci, Giovanni Molica ;
Radulescu, Vicentiu D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) :2985-3008
[5]   Bound state for the fractional Schrodinger equation with unbounded potential [J].
Cheng, Ming .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (04)
[6]   Concentrating standing waves for the fractional nonlinear Schrodinger equation [J].
Davila, Juan ;
del Pino, Manuel ;
Wei, Juncheng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (02) :858-892
[7]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[8]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262
[9]  
Frank R. L., PREPRINT
[10]  
Franzina G, 2014, RIV MAT UNIV PARMA, V5, P373