Self-Supervised Video Super-Resolution by Spatial Constraint and Temporal Fusion

被引:6
|
作者
Yang, Cuixin [1 ,2 ,3 ,4 ,5 ]
Luo, Hongming [1 ,2 ,3 ,4 ,5 ]
Liao, Guangsen [1 ,2 ,3 ,4 ,5 ]
Lu, Zitao [1 ,2 ,3 ,4 ,5 ]
Zhou, Fei [1 ,2 ,3 ,4 ,5 ]
Qiu, Guoping [1 ,3 ,4 ,5 ]
机构
[1] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
[3] Guangdong Key Lab Intelligent Informat Proc, Shenzhen, Peoples R China
[4] Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen, Peoples R China
[5] Key Lab Digital Creat Technol, Shenzhen, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION,, PT III | 2021年 / 13021卷
关键词
Video super-resolution; Self-supervision; Deep learning;
D O I
10.1007/978-3-030-88010-1_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To avoid any fallacious assumption on the degeneration procedure in preparing training data, some self-similarity based super-resolution (SR) algorithms have been proposed to exploit the internal recurrence of patches without relying on external datasets. However, the network architectures of those "zero-shot" SR methods are often shallow. Otherwise they would suffer from the over-fitting problem due to the limited samples within a single image. This restricts the strong power of deep neural networks (DNNs). To relieve this problem, we propose a middle-layer feature loss to allow the network architecture to be deeper for handling the video super-resolution (VSR) task in a self-supervised way. Specifically, we constrain the middle-layer feature of VSR network to be as similar as that of the corresponding single image super-resolution (SISR) in a Spatial Module, then fuse the inter-frame information in a Temporal Fusion Module. Experimental results demonstrate that the proposed algorithm achieves significantly superior results on real-world data in comparison with some state-of-the-art methods.
引用
收藏
页码:249 / 260
页数:12
相关论文
共 50 条
  • [1] Self-Supervised Deep Blind Video Super-Resolution
    Bai, Haoran
    Pan, Jinshan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (07) : 4641 - 4653
  • [2] Looking beyond input frames: Self-supervised adaptation for video super-resolution
    Yoo, Jinsu
    Nam, Jihoon
    Baik, Sungyong
    Kim, Tae Hyun
    PATTERN RECOGNITION, 2024, 154
  • [3] Spatio-Temporal Fusion Network for Video Super-Resolution
    Li, Huabin
    Zhang, Pingjian
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [4] SELF-LEARNED VIDEO SUPER-RESOLUTION WITH AUGMENTED SPATIAL AND TEMPORAL CONTEXT
    Fan, Zejia
    Liu, Jiaying
    Yang, Wenhan
    Xiang, Wei
    Guo, Zongming
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1925 - 1929
  • [5] Video super-resolution via mixed spatial-temporal convolution and selective fusion
    Sun, Wei
    Gong, Dong
    Shi, Javen Qinfeng
    van den Hengel, Anton
    Zhang, Yanning
    PATTERN RECOGNITION, 2022, 126
  • [6] Self-Supervised Learning for Spatial-Domain Light-Field Super-Resolution Imaging
    Liang Dan
    Zhang Haimiao
    Qiu Jun
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (04)
  • [7] Efficient Spatio-Temporal Network with Gated Fusion for Video Super-Resolution
    Li, Changyu
    Zhang, Dongyang
    Xie, Ning
    Shao, Jie
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2021, PT V, 2021, 12895 : 640 - 651
  • [8] Perception consistency ultrasound image super-resolution via self-supervised CycleGAN
    Heng Liu
    Jianyong Liu
    Shudong Hou
    Tao Tao
    Jungong Han
    Neural Computing and Applications, 2023, 35 : 12331 - 12341
  • [9] STRESS: Super-Resolution for Dynamic Fetal MRI Using Self-supervised Learning
    Xu, Junshen
    Turk, Esra Abaci
    Grant, P. Ellen
    Golland, Polina
    Adalsteinsson, Elfar
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT VII, 2021, 12907 : 197 - 206
  • [10] SuperVision: Self-Supervised Super-Resolution for Appearance-Based Gaze Estimation
    O'Shea, Galen
    Komeili, Majid
    GAZE MEETS MACHINE LEARNING WORKSHOP, 2023, 226 : 197 - 217