Genome-wide identification and expression profile analysis of the OMT gene family in response to cyst nematodes and multi-abiotic stresses in soybean

被引:5
作者
Zhao, Kezhen [1 ]
Yu, Kuanwei [1 ]
Fu, Xue [1 ]
Zhao, Xunchao [1 ]
Xia, Ning [2 ]
Zhan, Yuhang [1 ]
Zhao, Xue [1 ]
Han, Yingpeng [1 ]
机构
[1] Northeast Agr Univ, Chinese Minist Agr, Key Lab Soybean Biol, Northeastern Key Lab Soybean Biol & Genet & Breed, Harbin 150030, Peoples R China
[2] Northeast Agr Univ, Coll Food, Harbin 150030, Peoples R China
关键词
abiotic stress; bioinformatics analysis; CCOMT subfamily; expression pattern analysis; lignin; OMT gene family; soybean; soybean cyst nematode; O-METHYLTRANSFERASE; CAFFEOYL-COENZYME; PHENYLPROPANOID METABOLISM; LIGNIN BIOSYNTHESIS; DOWN-REGULATION; ARABIDOPSIS; CCOAOMT; 3-O-METHYLTRANSFERASE; EVOLUTION; BIOINFORMATICS;
D O I
10.1071/CP22002
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Context. Soybean cyst nematode is the most important pest of soybean (Glycine max (L.) Merr.) worldwide, causing serious yield losses. Lignin is a vital component of the cell wall that can provide resistance to cyst nematode. O-Methyltransferase (OMT) is a key enzyme involved in lignin metabolism in the phenylalanine pathway. Aims, In this study, the soybean OMT gene family was systematically identified, and the expression response of GmOMT to abiotic and cyst nematode stresses was investigated. Methods. In total, 67 OMT genes were obtained from the soybean genome through conserved structural domain alignment. GmOMT expression under abiotic stress of soybean was examined based on next-generation RNA sequencing (RNA-Seq). Comprehensive analysis of the genes was conducted, including gene structure, conserved structure, affinity, chromosomal localisation, functional prediction, Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, promoter analysis, and expression pattern analysis. Key results. The 67 GmOMT genes were identified and distributed among the 19 chromosomes. The GmOMT genes were classified into two categories: CCOMT subfamily and COMT subfamily. GmOMT genes from the same family shared similar gene structures and conserved structural domains, which have undergone strong purifying selection during evolution. The presence of multiple cis-responsive elements in the promoters of GmOMT genes suggested that members of the soybean OMT family may be involved in growth and developmental activities and resistance to stress in soybean. Conclusions. GmOMT expression under abiotic stress showed that some of the genes may play a role in abiotic stress. Of them, GmCCOMT3 and GmCCOMT7 were closely associated with lignin synthesis based on both RNA-Seq and quantitative real-time PCR analysis.
引用
收藏
页码:1279 / 1290
页数:12
相关论文
共 50 条
  • [21] Genome-Wide Identification and Characterization of the bHLH Gene Family and Its Response to Abiotic Stresses in Carthamus tinctorius
    Tan, Zhengwei
    Lu, Dandan
    Yu, Yongliang
    Li, Lei
    Dong, Wei
    Xu, Lanjie
    Yang, Qing
    Wan, Xiufu
    Liang, Huizhen
    PLANTS-BASEL, 2023, 12 (21):
  • [22] Genome-Wide Identification and Expression Analysis of the GSK3 Gene Family in Sunflower under Various Abiotic Stresses
    Ji, Xianwen
    Jiang, Ziying
    Wang, Jichao
    Dong, Lili
    Deng, Xinyi
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2024, 93 (08) : 1839 - 1850
  • [23] Genome-wide identification, characterization, and expression analysis of the Chalcone Synthase gene family in Oryza sativa under Abiotic Stresses
    Ahmad, Sheraz
    Jeridi, Mouna
    Siddiqui, Sazada
    Shah, Amir Zaman
    Ali, Saqib
    PLANT STRESS, 2023, 9
  • [24] Genome-Wide Identification and Expression Analysis of the VILLIN Gene Family in Soybean
    Zhou, Yueqiong
    He, Liangliang
    Zhou, Shaoli
    Wu, Qing
    Zhou, Xuan
    Mao, Yawen
    Zhao, Baolin
    Wang, Dongfa
    Zhao, Weiyue
    Wang, Ruoruo
    Hu, Huabin
    Chen, Jianghua
    PLANTS-BASEL, 2023, 12 (11):
  • [25] Genome-wide identification and expression analysis of phospholipase D gene in leaves of sorghum in response to abiotic stresses
    Wei, Jinpeng
    Shao, Wenjing
    Liu, Xinyu
    He, Lin
    Zhao, Changjiang
    Yu, Gaobo
    Xu, Jingyu
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2022, 28 (06) : 1261 - 1276
  • [26] Genome-wide identification and analysis of the IQM gene family in soybean
    Lv, Tianxiao
    Liu, Qiongrui
    Xiao, Hong
    Fan, Tian
    Zhou, Yuping
    Wang, Jinxing
    Tian, Chang-en
    FRONTIERS IN PLANT SCIENCE, 2023, 13
  • [27] Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat
    Xiao, Jie
    Hu, Rui
    Gu, Ting
    Han, Jiapeng
    Qiu, Ding
    Su, Peipei
    Feng, Jialu
    Chang, Junli
    Yang, Guangxiao
    He, Guangyuan
    BMC GENOMICS, 2019, 20 (1)
  • [28] Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat
    Jie Xiao
    Rui Hu
    Ting Gu
    Jiapeng Han
    Ding Qiu
    Peipei Su
    Jialu Feng
    Junli Chang
    Guangxiao Yang
    Guangyuan He
    BMC Genomics, 20
  • [29] Genome-wide identification of potato Trihelix gene family and its response to different abiotic stresses
    Hongyu Yang
    Yan Wang
    Taotao Liu
    Wenxia Yao
    Xiangjun Fan
    Bin Yu
    Guiying Shi
    BMC Plant Biology, 25 (1)
  • [30] Genome-Wide identification and expression analysis of CsABF/AREB gene family in cucumber (Cucumis sativus L.) and in response to phytohormonal and abiotic stresses
    Siting Lu
    Yali Qiao
    Xuejuan Pan
    Xinfang Chen
    Wanyi Su
    Ailing Li
    Xuelian Li
    Weibiao Liao
    Scientific Reports, 15 (1)