Charge transport in topological graphene nanoribbons and nanoribbon heterostructures

被引:14
|
作者
Mangnus, Mark J. J. [1 ]
Fischer, Felix R. [2 ,3 ,4 ,5 ]
Crommie, Michael F. [3 ,4 ,5 ,6 ]
Swart, Ingmar [1 ]
Jacobse, Peter H. [6 ]
机构
[1] Univ Utrecht, Debye Inst Nanomat Sci, POB 80000, Utrecht, Netherlands
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 荷兰研究理事会;
关键词
NEGATIVE DIFFERENTIAL RESISTANCE; ON-SURFACE SYNTHESIS; ELECTRONIC-PROPERTIES; QUANTUM INTERFERENCE; EDGE STATE; CONDUCTANCE; MAGNETISM; MOLECULE; DEVICES; PHOTOCONDUCTIVITY;
D O I
10.1103/PhysRevB.105.115424
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Although it is generally accepted that structural parameters like width, shape, and edge structure crucially affect the electronic characteristics of graphene nanoribbons (GNRs), the exact relationship between geometry and charge transport remains largely unexplored. In this paper, we present in situ through-transport measurements of various topological GNRs and GNR heterostructures by lifting the ribbon with the tip of a scanning tunneling microscope. At the same time, we develop a comprehensive transport model that enables us to understand various features, such as obscuring of localized states in through transport, the effect of topology on transport, as well as negative differential conductance in heterostructures with localized electronic modes. The combined experimental and theoretical efforts described in this paper serve to elucidate general charge transport phenomena in GNRs and GNR heterostructures.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Effects of Coulomb Blockade on the Charge Transport through the Topological States of Finite Armchair Graphene Nanoribbons and Heterostructures
    Kuo, David M. T.
    NANOMATERIALS, 2023, 13 (11)
  • [2] Correlated Topological States in Graphene Nanoribbon Heterostructures
    Joost, Jan-Philip
    Jauho, Antti-Pekka
    Bonitz, Michael
    NANO LETTERS, 2019, 19 (12) : 9045 - 9050
  • [3] Transport properties of graphene nanoribbon heterostructures
    Rosales, L.
    Orellana, P.
    Barticevic, Z.
    Pacheco, M.
    MICROELECTRONICS JOURNAL, 2008, 39 (3-4) : 537 - 540
  • [4] Phase coherent transport in graphene nanoribbons and graphene nanoribbon arrays
    Minke, S.
    Bundesmann, J.
    Weiss, D.
    Eroms, J.
    PHYSICAL REVIEW B, 2012, 86 (15)
  • [5] Thermoelectric transport properties of armchair graphene nanoribbon heterostructures
    Almeida, P. A.
    Martins, G. B.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (33)
  • [6] Quantum phase transitions and topological proximity effects in graphene nanoribbon heterostructures
    Zhang, Gufeng
    Li, Xiaoguang
    Wu, Guangfen
    Wang, Jie
    Culcer, Dimitrie
    Kaxiras, Efthimios
    Zhang, Zhenyu
    NANOSCALE, 2014, 6 (06) : 3259 - 3267
  • [7] Direct Simulation of Charge Transport in Graphene Nanoribbons
    Nastasi, Giovanni
    Camiola, V. Dario
    Romano, Vittorio
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2022, 31 (02) : 449 - 494
  • [8] Chiral symmetry breaking and topological charge of zigzag graphene nanoribbons
    Lee, Hyun Cheol
    Yang, S-R Eric
    NEW JOURNAL OF PHYSICS, 2024, 26 (03):
  • [9] Charge transport mechanism in networks of armchair graphene nanoribbons
    Nils Richter
    Zongping Chen
    Alexander Tries
    Thorsten Prechtl
    Akimitsu Narita
    Klaus Müllen
    Kamal Asadi
    Mischa Bonn
    Mathias Kläui
    Scientific Reports, 10
  • [10] Vertical and In-Plane Electronic Transport of Graphene Nanoribbon/Nanotube Heterostructures
    Felix, Antonio Bernardo
    Pacheco, Monica
    Orellana, Pedro
    Latge, Andrea
    NANOMATERIALS, 2022, 12 (19)