Combined Convolutional Neural Network for Highly Compressed Images Denoising

被引:0
作者
Liu, Binying [1 ]
Kamata, Sei-ichiro [1 ]
机构
[1] Waseda Univ, Grad Sch Informat Prod & Syst, Tokyo, Japan
来源
2020 JOINT 9TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2020 4TH INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR) | 2020年
关键词
image denoising; highly compressed image; convolu-tional neural network; nonlocal filters; BM3D; DEBLOCKING; FIELDS; DCT;
D O I
10.1109/icievicivpr48672.2020.9306597
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many methods for denoising additive white Gaussian images have been developed, such as the use of non-local mean filters (NLF) and deep convolutional neural networks (CNN). However, these denoising methods still have many limitations on compressed images such as JPEG2000 compression. Based on quantization of noisy wavelet coefficients, JPEG2000 may lead to very specific visual artifacts. This compressed image's noise distribution model is highly spatially correlated and very different from the noise distribution model in additive Gaussian white noise images. In this paper, we propose a convolutional neural network structure combined with nonlocal filter. At first a convolutional neural network have been trained by using highly compressed noisy images to obtain a specific noise model estimation and this noise model estimation is used for the residual neural network. Secondly, it based on non-proximity average filtering, where a similar block selection method is modified to find block artifacts in the compressed image and then do denoising. Finally, combining these two methods can get a clear image output. The evaluation results of this method on the grayscale image dataset are better than the latest technology. Contribution We produced a noise distribution CNN model that can predict the noise of highly compressed images with complex noise distribution, and combine CNN and Non-local mean filters to obtain good denoising results.
引用
收藏
页数:7
相关论文
共 38 条
[1]   A High-Quality Denoising Dataset for Smartphone Cameras [J].
Abdelhamed, Abdelrahman ;
Lin, Stephen ;
Brown, Michael S. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1692-1700
[2]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[3]  
[Anonymous], 2016, IMAGE DENOISING USIN
[4]  
[Anonymous], 2012, P 25 INT C NEUR INF
[5]  
Burger HC, 2012, PROC CVPR IEEE, P2392, DOI 10.1109/CVPR.2012.6247952
[6]   Is Denoising Dead? [J].
Chatterjee, Priyam ;
Milanfar, Peyman .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (04) :895-911
[7]   Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration [J].
Chen, Yunjin ;
Pock, Thomas .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (06) :1256-1272
[8]   Color image denoising via sparse 3d collaborative filtering with grouping constraint in luminance-chrominance space [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, :313-316
[9]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[10]   Compression Artifacts Reduction by a Deep Convolutional Network [J].
Dong, Chao ;
Deng, Yubin ;
Loy, Chen Change ;
Tang, Xiaoou .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :576-584