Towards photophoresis with the generalized Lorenz-Mie theory

被引:5
作者
Ambrosio, Leonardo Andre [1 ]
Wang, Jiajie [2 ]
Gouesbet, Gerard [3 ,4 ]
机构
[1] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, 400 Trabalhador sao carlense Ave, BR-13566590 Sao Carlos, SP, Brazil
[2] Xidian Univ, Sch Phys & Optoelect Engn, Xi'an 710071, Peoples R China
[3] Normandie Univ, Univ, CORIA UMR 6614, CNRS, Campus Univ Madrillet, F-76800 St Etienne Rouvray, France
[4] INSA Rouen, Campus Univ Madrillet, F-76800 St Etienne Rouvray, France
基金
巴西圣保罗研究基金会;
关键词
Generalized Lorenz-Mie theory; Photophoresis; ARBITRARY WAVE-FRONTS; IRRADIATED SPHERES; AEROSOL-PARTICLES; LIGHT-SCATTERING; FORCE; THERMOPHORESIS; CYLINDER; SHEETS; MOTION; BEAMS;
D O I
10.1016/j.jqsrt.2022.108266
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Based on the adjoint boundary value problem proposed decades ago by Zulehner and Rohatschek [1] , analytic and closed-form expressions for the photophoretic forces exerted by arbitrary-shaped beams on homogeneous and low-loss spherical particles is derived in both the free molecular and slip flow regimes. To do so, the asymmetry vector for arbitrary refractive index particles is explicitly calculated by expanding the internal electromagnetic fields with the aid of the generalized Lorenz-Mie theory (GLMT). The approach here proposed is, to the best of the authors' knowledge, the first systematic attempt to incorporate the GLMT stricto sensu into the field of photophoresis and might as well be extended, e.g. to spheroids and find important applications, among others, in optical trapping and manipulation of microparticles, in geoengineering, particle levitation, optical trap displays and so on. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
[1]   PHOTOPHORESIS OF ABSORBING PARTICLES [J].
AKHTARUZZAMAN, AFM ;
LIN, SP .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1977, 61 (01) :170-182
[2]   Generalized Lorenz-Mie theory in the analysis of longitudinal photophoresis of arbitrary-index particles: On-axis axisymmetric beams of the first kind [J].
Ambrosio, Leonardo A. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2021, 275 (275)
[3]   Photophoresis in the slip-flow and free molecular regimes for arbitrary-index particles [J].
Ambrosio, Leonardo A. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2020, 255
[4]   SIZE DEPENDENCE OF THE PHOTOPHORETIC FORCE [J].
ARNOLD, S ;
LEWITTES, M .
JOURNAL OF APPLIED PHYSICS, 1982, 53 (07) :5314-5319
[5]  
ARNOLD S, 1984, PHYS REV A, V29, P654, DOI 10.1103/PhysRevA.29.654
[6]   Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment [J].
Desyatnikov, Anton S. ;
Shvedov, Vladlen G. ;
Rode, Andrei V. ;
Krolikowski, Wieslaw ;
Kivshar, Yuri S. .
OPTICS EXPRESS, 2009, 17 (10) :8201-8211
[7]   Investigation on the photophoretic lift force acting upon particles under light irradiation [J].
Dong, Shuangling ;
Liu, Yafei .
JOURNAL OF AEROSOL SCIENCE, 2017, 113 :114-118
[8]   Thermophoretic and photophoretic velocities and forces of a spherical particle embedded in Brinkman medium [J].
Faltas, M. S. ;
Ragab, Kareem E. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (09)
[9]  
Fuchs N. A., 1964, ZENODO, DOI DOI 10.5281/ZENODO.7548469
[10]   Optical configurations for photophoretic trap of single particles in air [J].
Gong, Zhiyong ;
Pan, Yong-Le ;
Wang, Chuji .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (10)