Abstract Volterra integrodifferential equations with applications to parabolic models with memory

被引:32
作者
de Andrade, Bruno [2 ]
Viana, Arlucio [1 ]
机构
[1] Univ Fed Sergipe, Dept Matemat, Ave Vereador Olimpio Grande, Itabaiana, SE, Brazil
[2] Univ Fed Sergipe, Dept Matemat, Ave Rosa Else, Sao Cristovao, SE, Brazil
关键词
FUJITA CRITICAL EXPONENT; NONLINEAR HEAT-EQUATION; NAVIER-STOKES EQUATION; ASYMPTOTIC STABILITY; GLOBAL-SOLUTIONS; WELL-POSEDNESS; WAVE-EQUATION; BEHAVIOR; SYSTEMS; NONEXISTENCE;
D O I
10.1007/s00208-016-1469-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we are concerned with local existence, regularity and continuous dependence upon the initial data of -regular mild solutions for the abstract integrodifferential equation (1, 2). We also present a result on unique continuation and a blow-up alternative for an -regular mild solution of (1, 2). Finally, we apply our results to three interesting models: Navier-Stokes equations with memory, diffusion equations with memory and a strongly damped plate equation with memory.
引用
收藏
页码:1131 / 1175
页数:45
相关论文
共 52 条
[1]   Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain [J].
Aassila, M ;
Cavalcanti, MM ;
Soriano, JA .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (05) :1581-1602
[2]  
Adams R.A., 1975, Sobolev Spaces. Adams. Pure and applied mathematics
[3]  
Amann H., 1993, Function Spaces, Diff. Operators and Nonlinear Anal, P9, DOI [10.1007/978-3-663- 11336-2_1, DOI 10.1007/978-3-663-11336-21]
[4]  
[Anonymous], 1995, ABSTRACT LINEAR THEO
[5]   Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations [J].
Arrieta, JM ;
Carvalho, AN .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (01) :285-310
[6]   Parabolic problems with nonlinear boundary conditions and critical nonlinearities [J].
Arrieta, JM ;
Carvalho, AN ;
Rodríguez-Bernal, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (02) :376-406
[7]   Navier-Stokes equation with hereditary viscosity [J].
Barbu, V ;
Sritharan, SS .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (03) :449-461
[8]   A nonlinear heat equation with singular initial data [J].
Brezis, H ;
Cazenave, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 :277-304
[9]   A DIFFUSIVE LOGISTIC EQUATION WITH MEMORY IN BESSEL POTENTIAL SPACES [J].
Caicedo, Alejandro ;
Viana, Arlucio .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 92 (02) :251-258
[10]   Attractors for 2D-Navier-Stokes models with delays [J].
Caraballo, T ;
Real, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 205 (02) :271-297