Quasi-periodic wave solutions and asymptotic behavior for an extended (2+1)-dimensional shallow water wave equation

被引:0
作者
Rui, Wenjuan [1 ]
机构
[1] China Univ Min & Technol, Coll Sci, Xuzhou 221116, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2016年
关键词
Riemann theta function; soliton solutions; quasi-periodic wave solution; EVOLUTION-EQUATIONS; BILINEAR EQUATIONS; COLLOCATION METHOD; ORDER; MODEL;
D O I
10.1186/s13662-016-0832-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on Riemann theta function and bilinear Bucklund transformation, quasi-periodic wave solutions are constructed for an extended (2 + 1)-dimensional shallow water wave equation. A detail asymptotic analysis procedure to the one- and two-periodic wave solutions are presented, and the asymptotic properties of this type of solutions are proved. It is shown that the quasi-periodic wave solutions converge to the soliton solutions under small amplitude limits.
引用
收藏
页数:12
相关论文
共 29 条
[1]  
Abdelkawy MA, 2015, ROM REP PHYS, V67, P773
[2]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[3]  
[Anonymous], 1991, LONDON MATH SOC LECT
[4]  
Belokolos E. D., 1994, Algebro-geometric approach to nonlinear integrable equations
[5]  
Bhrawy AH, 2015, P ROMANIAN ACAD A, V16, P490
[6]  
Bhrawy AH, 2015, ROM REP PHYS, V67, P340
[7]  
Bhrawy AH, 2015, ROM J PHYS, V60, P344
[8]   A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations [J].
Bhrawy, A. H. ;
Doha, E. H. ;
Baleanu, D. ;
Ezz-Eldien, S. S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :142-156
[9]   A SPECTRAL LEGENDRE-GAUSS-LOBATTO COLLOCATION METHOD FOR A SPACE-FRACTIONAL ADVECTION DIFFUSION EQUATIONS WITH VARIABLE COEFFICIENTS [J].
Bhrawy, A. H. ;
Baleanu, D. .
REPORTS ON MATHEMATICAL PHYSICS, 2013, 72 (02) :219-233
[10]  
Braun M., 2013, DIFFERENTIAL EQUATIO