Concise review: Mesenchymal stem/multipotent stromal cells: The state of transdifferentiation and modes of tissue repair - Current views

被引:1477
作者
Phinney, Donald G. [1 ]
Prockop, Darwin J. [1 ]
机构
[1] Tulane Univ, Hlth Sci Ctr, Ctr Gene Therapy, New Orleans, LA 70112 USA
关键词
mesenchymal stem cells; marrow stromal cells; marrow stromal stem cells; Cellular therapy; transdifferentiation;
D O I
10.1634/stemcells.2007-0637
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Mesenchymal stem cells or multipotent stromal cells (MSCs) isolated from the bone marrow of adult organisms were initially characterized as plastic adherent, fibroblastoid cells with the capacity to generate heterotopic osseous tissue when transplanted in vivo. In recent years, MSCs or MSC-like cells have been shown to reside within the connective tissue of most organs, and their surface phenotype has been well described. A large number of reports have also indicated that the cells possess the capacity to transdifferentiate into epithelial cells and lineages derived from the neuroectoderm. The broad developmental plasticity of MSCs was originally thought to contribute to their demonstrated efficacy in a wide variety of experimental animal models of disease as well as in human clinical trials. However, new findings suggest that the ability of MSCs to alter the tissue microenvironment via secretion of soluble factors may contribute more significantly than their capacity for transdifferentiation in tissue repair. Herein, we critically evaluate the literature describing the plasticity of MSCs and offer insight into how the molecular and functional heterogeneity of this cell population, which reflects the complexity of marrow stroma as an organ system, may confound interpretation of their transdifferentiation potential. Additionally, we argue that this heterogeneity also provides a basis for the broad therapeutic efficacy of MSCs.
引用
收藏
页码:2896 / 2902
页数:7
相关论文
共 143 条
[1]   Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment [J].
Anjos-Afonso, Fernando ;
Bonnet, Dominique .
BLOOD, 2007, 109 (03) :1298-1306
[2]   Transplantation of bone marrow-derived mesenchymal stem cells rescue photoreceptor cells in the dystrophic retina of the rhodopsin knockout mouse [J].
Arnhold, S. ;
Absenger, Y. ;
Klein, H. ;
Addicks, K. ;
Schraermeyer, U. .
GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2007, 245 (03) :414-422
[3]   Adenovirally transduced bone marrow stromal cells differentiate into pigment epithelial cells and induce rescue effects in RCS rats [J].
Arnhold, Stefan ;
Heiduschka, Peter ;
Klein, Helmut ;
Absenger, Yvonne ;
Basnaoglu, Serkan ;
Kreppel, Florian ;
Henke-Fahle, Sylvia ;
Kochanek, Stefan ;
Bartz-Schmidt, Karl-Ulrich ;
Addicks, Klaus ;
Schraermeyer, Ulrich .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2006, 47 (09) :4121-4129
[4]   Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection [J].
Baddoo, M ;
Hill, K ;
Wilkinson, R ;
Gaupp, D ;
Hughes, C ;
Kopen, GC ;
Phinney, DG .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2003, 89 (06) :1235-1249
[5]   Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray [J].
Bertani, N ;
Malatesta, P ;
Volpi, G ;
Sonego, P ;
Perris, R .
JOURNAL OF CELL SCIENCE, 2005, 118 (17) :3925-3936
[6]   Bone marrow stromal stem cells: Nature, biology, and potential applications [J].
Bianco, P ;
Riminucci, M ;
Gronthos, S ;
Robey, PG .
STEM CELLS, 2001, 19 (03) :180-192
[7]   Perivascular cells expressing annexin A5 define a novel mesenchymal stem cell-like population with the capacity to differentiate into multiple mesenchymal lineages [J].
Brachvogel, B ;
Moch, H ;
Pausch, F ;
Schlötzer-Schrehardt, U ;
Hofmann, C ;
Hallmann, R ;
von der Mark, K ;
Winkler, T ;
Pöschl, E .
DEVELOPMENT, 2005, 132 (11) :2657-2668
[8]   Novel markers for the prospective isolation of human MSC [J].
Buehring, Hans-Joerg ;
Battula, Venkata Lokesh ;
Treml, Sabrina ;
Schewe, Bernhard ;
Kanz, Lothar ;
Vogel, Wichard .
HEMATOPOIETIC STEM CELLS VI, 2007, 1106 :262-271
[9]   Phenotypic and functional characteristics of mesenchymal stem cells differentiated along a Schwann cell lineage [J].
Caddick, Jenny ;
Kingham, Paul J. ;
Gardiner, Natalie J. ;
Wiberg, Mikael ;
Terenghi, Giorgio .
GLIA, 2006, 54 (08) :840-849
[10]   Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow [J].
Campagnoli, C ;
Roberts, IAG ;
Kumar, S ;
Bennett, PR ;
Bellantuono, I ;
Fisk, NM .
BLOOD, 2001, 98 (08) :2396-2402