The decomposition method for Cauchy advection-diffusion problems

被引:14
作者
Lesnic, D [1 ]
机构
[1] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
关键词
characteristic and noncharacteristic Cauchy problems; inverse problems; advection-diffusion equation; decomposition method; variable flow velocity;
D O I
10.1016/j.camwa.2004.10.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the solution of Cauchy problems for the advection-diffusion equation is obtained using the decomposition method. In the case when the flow velocity is constant, an analytical solution can be derived, whilst for variable flow velocity, symbolic numerical computations need to be performed. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:525 / 537
页数:13
相关论文
共 18 条
[2]   THE NOISY CONVERGENCE PHENOMENA IN DECOMPOSITION METHOD SOLUTIONS [J].
ADOMIAN, G ;
RACH, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 15 (03) :379-381
[4]   SOLVING FRONTIER PROBLEMS MODELED BY NONLINEAR PARTIAL-DIFFERENTIAL EQUATIONS [J].
ADOMIAN, G .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 22 (08) :91-94
[5]  
ADOMIAN G, 1988, APPL MATH LETT, V1, P7
[6]  
BURGGRAF RO, 1964, ASME C, V86, P373
[7]  
DEMEY G, 1991, BOUNDARY ELEMENT TEC, pR6
[8]  
Ginsberg F, 1963, Math Comp, V17, P257
[9]  
LANGFORD D, 1966, Q APPL MATH, V24, P315
[10]   The decomposition approach to inverse heat conduction [J].
Lesnic, D ;
Elliott, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 232 (01) :82-98