U(1) x U(1) symmetry-protected topological order in Gutzwiller wave functions

被引:31
|
作者
Liu, Zheng-Xin [1 ,2 ]
Mei, Jia-Wei [2 ]
Ye, Peng [2 ]
Wen, Xiao-Gang [1 ,2 ,3 ]
机构
[1] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW B | 2014年 / 90卷 / 23期
基金
美国国家科学基金会;
关键词
STATE; SUPERCONDUCTIVITY; DEGENERACY; INSULATOR; PHYSICS; MODEL;
D O I
10.1103/PhysRevB.90.235146
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Gutzwiller projection is a way to construct many-body wave functions that could carry topological order or symmetry-protected topological (SPT) order. However, an important issue is to determine whether or not a given Gutzwiller-projected wave function (GWF) carries a nontrivial SPT order, and which SPT order is carried by the wave function. In this paper, we numerically study the SPT order in a spin S = 1 GWF on the kagome lattice. Using the standard Monte Carlo method, we directly confirm that the GWF has (1) gapped bulk with short-range correlations, (2) a trivial topological order via a nondegenerate ground state, and zero topological entanglement entropy, (3) a nontrivial U(1) x U(1) SPT order via the Hall conductances of the protecting U(1) x U(1) symmetry, and (4) a symmetry-protected gapless boundary. This represents numerical evidence of continuous symmetry-protected topological order in two-dimensional bosonic lattice systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Gapless Symmetry-Protected Topological Order
    Scaffidi, Thomas
    Parker, Daniel E.
    Vasseur, Romain
    PHYSICAL REVIEW X, 2017, 7 (04):
  • [2] Kagome Chiral Spin Liquid as a Gauged U(1) Symmetry Protected Topological Phase
    He, Yin-Chen
    Bhattacharjee, Subhro
    Pollmann, Frank
    Moessner, R.
    PHYSICAL REVIEW LETTERS, 2015, 115 (26)
  • [3] Classification of (2+1)-dimensional topological order and symmetry-protected topological order for bosonic and fermionic systems with on-site symmetries
    Lan, Tian
    Kong, Liang
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2017, 95 (23)
  • [4] Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order
    Gu, Zheng-Cheng
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2009, 80 (15):
  • [5] Emergent higher-symmetry protected topological orders in the confined phase of U(1) gauge theory
    Pace, Salvatore D.
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2023, 107 (07)
  • [6] Hannay Angle: Yet Another Symmetry-Protected Topological Order Parameter in Classical Mechanics
    Kariyado, Toshikaze
    Hatsugai, Yasuhiro
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2016, 85 (04)
  • [7] Thouless Pumps and Bulk-Boundary Correspondence in Higher-Order Symmetry-Protected Topological Phases
    Wienand, Julian F.
    Horn, Friederike
    Aidelsburger, Monika
    Bibo, Julian
    Grusdt, Fabian
    PHYSICAL REVIEW LETTERS, 2022, 128 (24)
  • [8] Symmetry-protected topological order and negative-sign problem for SO(N) bilinear-biquadratic chains
    Okunishi, Kouichi
    Harada, Kenji
    PHYSICAL REVIEW B, 2014, 89 (13):
  • [9] Topological string on OSP(1|2)/U(1)
    Giribet, Gaston
    Hikida, Yasuaki
    Takayanagi, Tadashi
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (09):
  • [10] Gravitational waves from first order electroweak phase transition in models with the U(1)X gauge symmetry
    Hashino, Katsuya
    Kakizaki, Mitsuru
    Kanemura, Shinya
    Ko, Pyungwon
    Matsui, Toshinori
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (06):