A C1,α partial regularity result for integral functionals with p(x)-growth condition

被引:7
作者
Giannetti, Flavia [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
关键词
Variational integrals; partial regularity; variable exponent spaces; HOLDER CONTINUITY; MINIMIZERS; SPACES; MINIMA;
D O I
10.1515/acv-2015-0011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish C-1,C-alpha partial regularity for the local minimizers of integral functionals of the type F(u; Omega) := integral(Omega) (1 + vertical bar Du vertical bar(2))(p(x)/2) dx, where the gradient of the exponent function p(.) >= 2 belongs to a suitable Orlicz-Zygmund class.
引用
收藏
页码:395 / 407
页数:13
相关论文
共 32 条
  • [1] ACERBI E, 1987, ARCH RATION MECH AN, V99, P261
  • [2] Regularity results for a class of functionals with non-standard growth
    Acerbi, E
    Mingione, G
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) : 121 - 140
  • [3] [Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002
  • [4] [Anonymous], 2006, Applications of mathematics, DOI DOI 10.1007/S10778-006-0110-3
  • [5] [Anonymous], 2001, Ann. Scuola Norm. Sup. Pisa Cl. Sci
  • [6] [Anonymous], 1968, Boll. Unione Mat. Ital.
  • [7] Partial Holder continuity for discontinuous elliptic problems with VMO-coefficients
    Boegelein, Verena
    Duzaar, Frank
    Habermann, Jens
    Scheven, Christoph
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2011, 103 : 371 - 404
  • [8] Regularity for non-autonomous functionals with almost linear growth
    Breit, Dominic
    De Maria, Bruno
    di Napoli, Antonia Passarelli
    [J]. MANUSCRIPTA MATHEMATICA, 2011, 136 (1-2) : 83 - 114
  • [9] Cianchi A., 1998, P INT C DIFF EQ LISB, P306
  • [10] Holder continuity of the gradient of p(x)-harmonic mappings
    Coscia, A
    Mingione, G
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (04): : 363 - 368