Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal

被引:69
作者
Lu, JG [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200030, Peoples R China
关键词
chaos; synchronization; fractional-order system; fractional calculus;
D O I
10.1016/j.physa.2005.04.040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, based on the idea of nonlinear observer and stability theory of fractional-order systems, a new systematic scheme to synchronize a class of fractional-order chaotic systems via a scalar transmitted signal is developed. The approach is simple, global and theoretically rigorous. It enables synchronization of fractional-order chaotic systems to be achieved in a systematic way and does not require the computation of the conditional Lyapunov exponents. Simulation results are used to visualize and illustrate the effectiveness of the proposed synchronization method. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 118
页数:12
相关论文
共 28 条
[1]   Fractional-order Wien-bridge oscillator [J].
Ahmad, W ;
El-khazali, R ;
Elwakil, AS .
ELECTRONICS LETTERS, 2001, 37 (18) :1110-1112
[2]   On nonlinear control design for autonomous chaotic systems of integer and fractional orders [J].
Ahmad, WM ;
Harb, AM .
CHAOS SOLITONS & FRACTALS, 2003, 18 (04) :693-701
[3]   Chaos in fractional-order autonomous nonlinear systems [J].
Ahmad, WM ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :339-351
[4]   Chaotic behavior in noninteger-order cellular neural networks [J].
Arena, P ;
Fortuna, L ;
Porto, D .
PHYSICAL REVIEW E, 2000, 61 (01) :776-781
[5]   Bifurcation and chaos in noninteger order cellular neural networks [J].
Arena, P ;
Caponetto, R ;
Fortuna, L ;
Porto, D .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (07) :1527-1539
[6]  
ARENA P, 1997, P ECCTD BUD, P1259
[7]   FRACTIONAL ORDER STATE-EQUATIONS FOR THE CONTROL OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
CALICO, RA .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (02) :304-311
[8]   FRACTAL SYSTEM AS REPRESENTED BY SINGULARITY FUNCTION [J].
CHAREF, A ;
SUN, HH ;
TSAO, YY ;
ONARAL, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (09) :1465-1470
[9]  
Chen C.-T., 1984, LINEAR SYSTEM THEORY
[10]  
CHEN G, 1987, CHAOS CONTROL SYNCHR