Cattaneo-Christov Heat Flux Model for Second Grade Nanofluid Flow with Hall Effect through Entropy Generation over Stretchable Rotating Disk

被引:27
作者
Ahmad, Muhammad Wakeel [1 ]
McCash, Luthais B. [2 ]
Shah, Zahir [3 ]
Nawaz, Rashid [1 ]
机构
[1] Abdul Wali Khan Univ, Dept Math, Mardan 23200, Kpk, Pakistan
[2] Univ Leicester, Coll Sci & Engn, Dept Math, Univ Rd, Leicester LE1 7RH, Leics, England
[3] King Mongkuts Univ Technol Thonburi KMUTT, Ctr Excellence Theoret & Computat Sci TaCS CoE, SCL Fixed Point Lab 802, Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok 10140, Thailand
关键词
entropy; second grade nanofluid; Cattaneo-Christov heat flux model; nanofluid; nonlinear thermal radiation; Joule heating; HOMOGENEOUS-HETEROGENEOUS REACTIONS; NONLINEAR THERMAL-RADIATION; BOUNDARY-LAYER-FLOW; TRANSFER ENHANCEMENT; CHEMICAL-REACTION; MIXED CONVECTION; WILLIAMSON FLUID; PERISTALTIC FLOW; MAGNETIC-FIELD; MAXWELL FLUID;
D O I
10.3390/coatings10070610
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The second grade nanofluid flow with Cattaneo-Christov heat flux model by a stretching disk is examined in this paper. The nanofluid flow is characterized with Hall current, Brownian motion and thermophoresis influences. Entropy optimization with nonlinear thermal radiation, Joule heating and heat absorption/generation is also presented. The convergence of an analytical approach (HAM) is shown. Variation in the nanofluid flow profiles (velocities, thermal, concentration, total entropy, Bejan number) via influential parameters and number are also presented. Radial velocity, axial velocity and total entropy are enhanced with the Weissenberg number. Axial velocity, tangential velocity and Bejan number are heightened with the Hall parameter. The total entropy profile is enhanced with the Brinkman number, diffusion parameter, magnetic parameter and temperature difference. The Bejan number profile is heightened with the diffusion parameter and temperature difference. Arithmetical values of physical quantities are illustrated in Tables.
引用
收藏
页数:23
相关论文
共 40 条
[1]   Effect of a chemical reaction on magnetohydrodynamic boundary layer flow of a Maxwell fluid over a stretching sheet with nanoparticles [J].
Afify, Ahmed A. ;
Elgazery, Nasser S. .
PARTICUOLOGY, 2016, 29 :154-161
[2]  
Aurangzeeb S, 2011, CANADIAN SCI ENG MAT, V2, P153
[3]  
Baron Fourier J.B.J., 2005, THEORIE ANALYTIQUE C
[4]   Numerical study of magnetohydrodynamic viscous plasma flow in rotating porous media with Hall currents and inclined magnetic field influence [J].
Beg, O. Anwar ;
Sim, Lik ;
Zueco, J. ;
Bhargava, R. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (02) :345-359
[5]  
CATTANEO C., 1948, Atti Sem Mat Fis Univ Modena, V3, P83
[6]  
Choi S.U. S., ASME INT MECH ENG C
[7]   On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction [J].
Christov, C. I. .
MECHANICS RESEARCH COMMUNICATIONS, 2009, 36 (04) :481-486
[8]   Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet [J].
Dalir, Nemat ;
Dehsara, Mohammad ;
Nourazar, S. Salman .
ENERGY, 2015, 79 :351-362
[9]  
Das S, 2012, INT J COMPUTER APPL, V57, P37
[10]   MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects [J].
Farooq, M. ;
Khan, M. Ijaz ;
Waqas, M. ;
Hayat, T. ;
Alsaedi, A. ;
Khan, M. Imran .
JOURNAL OF MOLECULAR LIQUIDS, 2016, 221 :1097-1103