Edge-Szeged index;
Szeged index;
Unicyclic graph;
Perfect matching;
MAXIMUM WIENER INDEX;
EXTREMAL CACTI;
TREES;
RESPECT;
D O I:
10.1016/j.dam.2020.03.033
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The edge-Szeged index of a graph G is defined as Sz(e)(G) = Sigma(uv is an element of E(G)) m(u)(uv vertical bar G)m(v)(uv vertical bar G), where m(u)(uv vertical bar G) (resp., m(v)(uv vertical bar G)) is the number of edges whose distance to vertex u (resp., v) is smaller than the distance to vertex v (resp., u), respectively. In this paper, we characterize the graphs with minimum edge-Szeged index among all the unicyclic graphs with given order and perfect matchings. (C) 2020 Elsevier B.V. All rights reserved.
机构:
Hunan Normal Univ, Coll Math & Stat, Changsha 410081, Hunan, Peoples R ChinaHunan Normal Univ, Coll Math & Stat, Changsha 410081, Hunan, Peoples R China
Deng, Hanyuan
Xiao, Qiqi
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Normal Univ, Coll Math & Stat, Changsha 410081, Hunan, Peoples R China
Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R ChinaHunan Normal Univ, Coll Math & Stat, Changsha 410081, Hunan, Peoples R China
机构:
Hunan Normal Univ, Coll Math & Stat, Changsha 410081, Hunan, Peoples R ChinaHunan Normal Univ, Coll Math & Stat, Changsha 410081, Hunan, Peoples R China
Deng, Hanyuan
Xiao, Qiqi
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Normal Univ, Coll Math & Stat, Changsha 410081, Hunan, Peoples R China
Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R ChinaHunan Normal Univ, Coll Math & Stat, Changsha 410081, Hunan, Peoples R China