On the edge-Szeged index of unicyclic graphs with perfect matchings

被引:3
|
作者
He, Shengjie [1 ]
Hao, Rong-Xia [1 ]
Feng, Yan-Quan [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Edge-Szeged index; Szeged index; Unicyclic graph; Perfect matching; MAXIMUM WIENER INDEX; EXTREMAL CACTI; TREES; RESPECT;
D O I
10.1016/j.dam.2020.03.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The edge-Szeged index of a graph G is defined as Sz(e)(G) = Sigma(uv is an element of E(G)) m(u)(uv vertical bar G)m(v)(uv vertical bar G), where m(u)(uv vertical bar G) (resp., m(v)(uv vertical bar G)) is the number of edges whose distance to vertex u (resp., v) is smaller than the distance to vertex v (resp., u), respectively. In this paper, we characterize the graphs with minimum edge-Szeged index among all the unicyclic graphs with given order and perfect matchings. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:207 / 223
页数:17
相关论文
共 50 条
  • [21] The edge Szeged index of product graphs
    Khalifeh, Mohammad Hosein
    Yousefi-Azari, Hasan
    Ashrafi, Ali Reza
    Gutman, Ivan
    CROATICA CHEMICA ACTA, 2008, 81 (02) : 277 - 281
  • [22] Perfect Matchings in Edge-Transitive Graphs
    Marandi, A.
    Nejah, A. H.
    Behmaram, A.
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 5 : S27 - S33
  • [23] Cactus graphs with minimum edge revised Szeged index
    Liu, Mengmeng
    Wang, Shujing
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 90 - 96
  • [24] On Extremal Cacti with Respect to the Edge Szeged Index and Edge-vertex Szeged Index
    He, Shengjie
    Hao, Rong-Xia
    Yu, Aimei
    FILOMAT, 2018, 32 (11) : 4069 - 4078
  • [25] The Wiener index of bicyclic graphs with perfect matchings
    Tan, Shangwang
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2019, 40 (04) : 931 - 956
  • [26] THE REVISED EDGE SZEGED INDEX OF BRIDGE GRAPHS
    Dong, Hui
    Zhou, Bo
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 41 (04): : 559 - 566
  • [27] PI Index and Edge-Szeged Index of HC5C7[k,p] Nanotubes
    Iranmanesh, Ali
    Pakravesh, Y.
    Mahmiani, A.
    UTILITAS MATHEMATICA, 2008, 77 : 65 - 78
  • [28] On the index of quasi-tree graphs with perfect matchings
    Fan, Qiong
    Li, Shuchao
    ARS COMBINATORIA, 2015, 118 : 315 - 332
  • [29] The extremal unicyclic graphs with perfect matching with respect to Hosoya index and Merrifield-Simmons index
    Zhu, Zhongxun
    ARS COMBINATORIA, 2016, 124 : 277 - 287
  • [30] The Estrada index of unicyclic graphs
    Du, Zhibin
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) : 3149 - 3159