On the edge-Szeged index of unicyclic graphs with perfect matchings

被引:3
|
作者
He, Shengjie [1 ]
Hao, Rong-Xia [1 ]
Feng, Yan-Quan [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Edge-Szeged index; Szeged index; Unicyclic graph; Perfect matching; MAXIMUM WIENER INDEX; EXTREMAL CACTI; TREES; RESPECT;
D O I
10.1016/j.dam.2020.03.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The edge-Szeged index of a graph G is defined as Sz(e)(G) = Sigma(uv is an element of E(G)) m(u)(uv vertical bar G)m(v)(uv vertical bar G), where m(u)(uv vertical bar G) (resp., m(v)(uv vertical bar G)) is the number of edges whose distance to vertex u (resp., v) is smaller than the distance to vertex v (resp., u), respectively. In this paper, we characterize the graphs with minimum edge-Szeged index among all the unicyclic graphs with given order and perfect matchings. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:207 / 223
页数:17
相关论文
共 50 条
  • [1] On the edge-Szeged index of unicyclic graphs with given diameter
    Wang, Guangfu
    Li, Shuchao
    Qi, Dongchao
    Zhang, Huihui
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 336 : 94 - 106
  • [2] Minimum Szeged index among unicyclic graphs with perfect matchings
    Hechao Liu
    Hanyuan Deng
    Zikai Tang
    Journal of Combinatorial Optimization, 2019, 38 : 443 - 455
  • [3] Minimum Szeged index among unicyclic graphs with perfect matchings
    Liu, Hechao
    Deng, Hanyuan
    Tang, Zikai
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (02) : 443 - 455
  • [4] On the minimum edge-Szeged index of fully-loaded unicyclic graphs
    Liu, Hechao
    Qiu, Zhengping
    Hong, Wenhao
    Tang, Zikai
    DISCRETE MATHEMATICS LETTERS, 2020, 4 : 37 - 41
  • [5] On the Revised Edge-Szeged Index of Graphs
    Liu, Hechao
    You, Lihua
    Tang, Zikai
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2019, 10 (04): : 279 - 293
  • [6] Augmented Zagreb index of trees and unicyclic graphs with perfect matchings
    Sun, Xiaoling
    Gao, Yubin
    Du, Jianwei
    Xu, Lan
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 335 : 75 - 81
  • [7] On the Revised Szeged Index of Unicyclic Graphs with Given Diameter
    Yu, Aimei
    Peng, Kun
    Hao, Rong-Xia
    Fu, Jiahao
    Wang, Yingsheng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 651 - 672
  • [8] A Novel Version of the Edge-Szeged Index
    Dong, Hui
    Zhou, Bo
    Trinajstic, Nenad
    CROATICA CHEMICA ACTA, 2011, 84 (04) : 543 - 545
  • [9] SZEGED INDEX OF A CLASS OF UNICYCLIC GRAPHS
    Qi, Xuli
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (02) : 1139 - 1155
  • [10] ON THE DISTANCE SPECTRAL RADIUS OF UNICYCLIC GRAPHS WITH PERFECT MATCHINGS
    Zhang, Xiao Ling
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 569 - 587