SaltiNet: Scan-path Prediction on 360 Degree Images using Saliency Volumes

被引:90
作者
Assens, Marc [1 ,3 ]
Giro-i-Nieto, Xavier [1 ]
McGuinness, Kevin [2 ]
O'Connor, Noel E. [2 ]
机构
[1] UPC, Image Proc Grp, Barcelona, Catalonia, Spain
[2] Dublin City Univ, Insight Ctr Data Analyt, Dublin, Ireland
[3] Insight Ctr Data Analyt, Dublin, Ireland
来源
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017) | 2017年
基金
爱尔兰科学基金会;
关键词
ATTENTION; MODEL;
D O I
10.1109/ICCVW.2017.275
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce SaltiNet, a deep neural network for scan-path prediction trained on 360-degree images. The model is based on a temporal-aware novel representation of saliency information named the saliency volume. The first part of the network consists of a model trained to generate saliency volumes, whose parameters are fit by back-propagation computed from a binary cross entropy (BCE) loss over downsampled versions of the saliency volumes. Sampling strategies over these volumes are used to generate scan-paths over the 360-degree images. Our experiments show the advantages of using saliency volumes, and how they can be used for related tasks. Our source code and trained models available at https://github.com/massens/saliency-360salient-2017.
引用
收藏
页码:2331 / 2338
页数:8
相关论文
共 32 条
[1]  
[Anonymous], SALIENT360 VIS ATT M
[2]  
[Anonymous], 2016, PROC 4 INT C LEARN R
[3]  
[Anonymous], 2016, IEEE C COMP VIS PATT
[4]  
[Anonymous], 2016, ARXIV161001708
[5]  
[Anonymous], 2017, ARXIV170501759
[6]  
[Anonymous], 2016, ARXIV161109571
[7]  
[Anonymous], 2014, CORR
[8]  
[Anonymous], 2016, 161001563 ARXIV
[9]  
[Anonymous], 2015, IEEE C COMP VIS PATT
[10]  
[Anonymous], 2016, CVPR