Radiomics Applications in Renal Tumor Assessment: A Comprehensive Review of the Literature

被引:53
作者
Suarez-Ibarrola, Rodrigo [1 ]
Basulto-Martinez, Mario [2 ]
Heinze, Alexander [3 ]
Gratzke, Christian [1 ]
Miernik, Arkadiusz [1 ]
机构
[1] Univ Freiburg, Dept Urol, Fac Med, Med Ctr, D-79106 Freiburg, Germany
[2] Hosp Reg Alta Especialidad Peninsula Yucatan, Dept Urol, Merida 97133, Mexico
[3] Marien Hosp, Dept Urol, D-22087 Hamburg, Germany
关键词
radiomics; texture analysis; machine learning; deep learning; artificial neural network; small renal mass; angiomyolipoma; oncocytoma; renal cell carcinoma; kidney cancer; CELL-CARCINOMA; CLEAR-CELL; TEXTURE ANALYSIS; COMPUTED-TOMOGRAPHY; DIAGNOSTIC-ACCURACY; VISIBLE FAT; MINIMAL FAT; CT; ANGIOMYOLIPOMA; MASSES;
D O I
10.3390/cancers12061387
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Radiomics texture analysis offers objective image information that could otherwise not be obtained by radiologists ' subjective radiological interpretation. We investigated radiomics applications in renal tumor assessment and provide a comprehensive review. A detailed search of original articles was performed using the PubMed-MEDLINE database until 20 March 2020 to identify English literature relevant to radiomics applications in renal tumor assessment. In total, 42 articles were included in the analysis and divided into four main categories: renal mass differentiation, nuclear grade prediction, gene expression-based molecular signatures, and patient outcome prediction. The main area of research involves accurately differentiating benign and malignant renal masses, specifically between renal cell carcinoma (RCC) subtypes and from angiomyolipoma without visible fat and oncocytoma. Nuclear grade prediction may enhance proper patient selection for risk-stratified treatment. Radiomics-predicted gene mutations may serve as surrogate biomarkers for high-risk disease, while predicting patients' responses to targeted therapies and their outcomes will help develop personalized treatment algorithms. Studies generally reported the superiority of radiomics over expert radiological interpretation. Radiomics provides an alternative to subjective image interpretation for improving renal tumor diagnostic accuracy. Further incorporation of clinical and imaging data into radiomics algorithms will augment tumor prediction accuracy and enhance individualized medicine.
引用
收藏
页数:25
相关论文
共 65 条
[51]   Prediction of ISUP grading of clear cell renal cell carcinoma using support vector machine model based on CT images [J].
Sun, Xiaoqing ;
Liu, Lin ;
Xu, Kai ;
Li, Wenhui ;
Huo, Ziqi ;
Liu, Heng ;
Shen, Tongxu ;
Pan, Feng ;
Jiang, Yuqing ;
Zhang, Mengchao .
MEDICINE, 2019, 98 (14)
[52]   Radiologic-Radiomic Machine Learning Models for Differentiation of Benign and Malignant Solid Rena Masses: Comparison With Expert-Level Radiologists [J].
Sun, Xue-Ying ;
Feng, Qiu-Xia ;
Xu, Xun ;
Zhang, Jing ;
Zhu, Fei-Peng ;
Yang, Yan-Hao ;
Zhang, Yu-Dong .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2020, 214 (01) :W44-W54
[53]   Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning [J].
Tabibu, Sairam ;
Vinod, P. K. ;
Jawahar, C. V. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[54]  
Thurnher M., 2008, Handb Dendritic Cells, V3, P1117, DOI [10.1002/9783527619696.ch53, DOI 10.1002/9783527619696.CH53]
[55]   Radiomics of computed tomography and magnetic resonance imaging in renal cell carcinoma-a systematic review and meta-analysis [J].
Ursprung, Stephan ;
Beer, Lucian ;
Bruining, Annemarie ;
Woitek, Ramona ;
Stewart, Grant D. ;
Gallagher, Ferdia A. ;
Sala, Evis .
EUROPEAN RADIOLOGY, 2020, 30 (06) :3558-3566
[56]   Renal oncocytoma, yet another tumour that does not fit in the dualistic benign/malignant paradigm? [J].
Van der Kwast, Th. ;
Perez-Ordonez, B. .
JOURNAL OF CLINICAL PATHOLOGY, 2007, 60 (06) :585-586
[57]   Outcome of papillary versus clear cell renal cell carcinoma varies significantly in non-metastatic disease [J].
Wagener, Nina ;
Edelmann, Dominic ;
Benner, Axel ;
Zigeuner, Richard ;
Borgmann, Hendrik ;
Wolff, Ingmar ;
Krabbe, Laura M. ;
Musquera, Mireia ;
Dell'Oglio, Paolo ;
Capitanio, Umberto ;
Klatte, Tobias ;
Cindolo, Luca ;
May, Matthias ;
Brookman-May, Sabine D. .
PLOS ONE, 2017, 12 (09)
[58]   A roadmap for the clinical implementation of optical-imaging biomarkers [J].
Waterhouse, Dale J. ;
Fitzpatrick, Catherine R. M. ;
Pogue, Brian W. ;
O'Connor, James P. B. ;
Bohndiek, Sarah E. .
NATURE BIOMEDICAL ENGINEERING, 2019, 3 (05) :339-353
[59]   Comparative study of CT appearances in renal oncocytoma and chromophobe renal cell carcinoma [J].
Wu, Jingtao ;
Zhu, Qingqiang ;
Zhu, Wenrong ;
Chen, Wenxin ;
Wang, Shouan .
ACTA RADIOLOGICA, 2016, 57 (04) :500-506
[60]   Deep Learning to Distinguish Benign from Malignant Renal Lesions Based on Routine MR Imaging [J].
Xi, Ianto Lin ;
Zhao, Yijun ;
Wang, Robin ;
Chang, Marcello ;
Purkayastha, Subhanik ;
Chang, Ken ;
Huang, Raymond Y. ;
Silva, Alvin C. ;
Vallieres, Martin ;
Habibollahi, Peiman ;
Fan, Yong ;
Zou, Beiji ;
Gade, Terence P. ;
Zhang, Paul J. ;
Soulen, Michael C. ;
Zhang, Zishu ;
Bai, Harrison X. ;
Stavropoulos, S. William .
CLINICAL CANCER RESEARCH, 2020, 26 (08) :1944-1952