Process Model Inversion in the Data-Driven Engineering Context for Improved Parameter Sensitivities

被引:7
作者
Selvarajan, Subiksha [1 ]
Tappe, Aike Aline [1 ]
Heiduk, Caroline [2 ]
Scholl, Stephan [2 ]
Schenkendorf, Rene [1 ]
机构
[1] Harz Univ Appl Sci, Automat & Comp Sci Dept, Friedrichstr 57-59, D-38855 Wernigerode, Germany
[2] TU Braunschweig, Inst Chem & Thermal Proc Engn, Langer Kamp 7, D-38106 Braunschweig, Germany
关键词
process systems engineering; system identification; systems theory; partial differential equations; differential flatness; data-driven engineering; neural ordinary differential equations; physics-informed neural networks; parameter sensitivities; boundary and distributed control; DIFFERENTIAL-EQUATIONS; DYNAMIC-MODELS; FLATNESS; IDENTIFICATION; FRAMEWORK; SYSTEMS; DESIGN;
D O I
10.3390/pr10091764
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Industry 4.0 has embraced process models in recent years, and the use of model-based digital twins has become even more critical in process systems engineering, monitoring, and control. However, the reliability of these models depends on the model parameters available. The accuracy of the estimated parameters is, in turn, determined by the amount and quality of the measurement data and the algorithm used for parameter identification. For the definition of the parameter identification problem, the ordinary least squares framework is still state-of-the-art in the literature, and better parameter estimates are only possible with additional data. In this work, we present an alternative strategy to identify model parameters by incorporating differential flatness for model inversion and neural ordinary differential equations for surrogate modeling. The novel concept results in an input-least-squares-based parameter identification problem with significant parameter sensitivity changes. To study these sensitivity effects, we use a classic one-dimensional diffusion-type problem, i.e., an omnipresent equation in process systems engineering and transport phenomena. As shown, the proposed concept ensures higher parameter sensitivities for two relevant scenarios. Based on the results derived, we also discuss general implications for data-driven engineering concepts used to identify process model parameters in the recent literature.
引用
收藏
页数:17
相关论文
共 69 条
[41]   Optimal experiment design under parametric uncertainty: A comparison of a sensitivities based approach versus a polynomial chaos based stochastic approach [J].
Nimmegeers, Philippe ;
Bhonsale, Satyajeet ;
Telen, Dries ;
Van Impe, Jan .
CHEMICAL ENGINEERING SCIENCE, 2020, 221
[42]   ChemNODE: A neural ordinary differential equations framework for efficient chemical kinetic solvers [J].
Owoyele, Opeoluwa ;
Pal, Pinaki .
ENERGY AND AI, 2022, 7
[43]  
Polis M. P., 1983, Control of Distributed Parameter Systems 1982. Proceedings of the Third IFAC Symposium, P45
[44]   Parameter estimation in continuous-time dynamic models using principal differential analysis [J].
Poyton, AA ;
Varziri, MS ;
McAuley, KB ;
McLellan, PJ ;
Ramsay, JO .
COMPUTERS & CHEMICAL ENGINEERING, 2006, 30 (04) :698-708
[45]  
Rackauckas C., 2019, arXiv
[46]  
Rackauckas C., 2020, arXiv
[47]   Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations [J].
Raissi, M. ;
Perdikaris, P. ;
Karniadakis, G. E. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 378 :686-707
[48]   The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support [J].
Razavi, Saman ;
Jakeman, Anthony ;
Saltelli, Andrea ;
Prieur, Clementine ;
Iooss, Bertrand ;
Borgonovo, Emanuele ;
Plischke, Elmar ;
Lo Piano, Samuele ;
Iwanaga, Takuya ;
Becker, William ;
Tarantola, Stefano ;
Guillaume, Joseph H. A. ;
Jakeman, John ;
Gupta, Hoshin ;
Melillo, Nicola ;
Rabitti, Giovanni ;
Chabridon, Vincent ;
Duan, Qingyun ;
Sun, Xifu ;
Smith, Stefan ;
Sheikholeslami, Razi ;
Hosseini, Nasim ;
Asadzadeh, Masoud ;
Puy, Arnald ;
Kucherenko, Sergei ;
Maier, Holger R. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2021, 137
[49]  
Rigatos GG, 2015, STUD SYST DECIS CONT, V25, DOI 10.1007/978-3-319-16420-5
[50]  
Rigatos G.G., 2014, ADV MODELS NEURAL NE