ILL-POSED PROBLEMS IN GEOMECHANICS

被引:0
作者
Mirenkov, V. E. [1 ]
机构
[1] Russian Acad Sci, Siberian Branch, Inst Min, Novosibirsk, Russia
基金
俄罗斯基础研究基金会;
关键词
Equations; method; boundary; contact; displacements; stress; pillar; rock block; inverse problem; direct problem;
D O I
暂无
中图分类号
TD [矿业工程];
学科分类号
0819 ;
摘要
Any inverse problem requires that its ill-posedness be overcome through regularization or derivation of precise equations. On the basis of singular integral equations, connecting boundary values of stresses and displacements, the author proposes convergence method and its numerical algorithm in terms of a piecewise-homogeneous domain (pillar) where elastic properties, boundary surfaces and the contact conditions are determined under the overdetermined boundary conditions at the available contour of the domain.
引用
收藏
页码:283 / 289
页数:7
相关论文
共 7 条
[1]  
Kolmogorov A.N., 1987, TEORIYA INFORM TEORI
[2]  
KOPTSOV AV, 2008, MEKH TVERD TELA
[3]   Identification of weakenings in a rock block [J].
Krasnovsky, A. A. ;
Mirenkov, V. E. .
JOURNAL OF MINING SCIENCE, 2010, 46 (02) :113-119
[4]  
LAVRENTEV MM, 1981, NEKORREKTNYE ZADACHI
[5]  
Mirenkov V.E., 2009, MATEMATICHESKOE MODE
[6]  
MUSKHELISHVILI NI, 1967, NEKOTORYE OSNOVNYE Z
[7]  
Tikhonov A.N., 1979, Methods for Solving Incorrect Problems