A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy

被引:93
作者
Sutton, Elizabeth J. [1 ]
Onishi, Natsuko [1 ]
Fehr, Duc A. [2 ]
Dashevsky, Brittany Z. [1 ]
Sadinski, Meredith [1 ]
Pinker, Katja [1 ]
Martinez, Danny F. [1 ]
Brogi, Edi [3 ]
Braunstein, Lior [4 ]
Razavi, Pedram [5 ]
El-Tamer, Mahmoud [6 ]
Sacchini, Virgilio [6 ]
Deasy, Joseph O. [2 ]
Morris, Elizabeth [1 ]
Veeraraghavan, Harini [2 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Radiol, 1275 York Ave, New York, NY 10021 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
[3] Mem Sloan Kettering Canc Ctr, Dept Pathol, 1275 York Ave, New York, NY 10021 USA
[4] Mem Sloan Kettering Canc Ctr, Dept Radiat Oncol, 1275 York Ave, New York, NY 10021 USA
[5] Mem Sloan Kettering Canc Ctr, Dept Med, 1275 York Ave, New York, NY 10021 USA
[6] Mem Sloan Kettering Canc Ctr, Dept Surg, 1275 York Ave, New York, NY 10021 USA
关键词
Breast cancer; Neoadjuvant chemotherapy; MRI; Radiomics; Machine learning; DCE-MRI; EARLY PREDICTION; FEATURES; THERAPY; HETEROGENEITY; SEGMENTATION; MAMMOGRAPHY; RESOLUTION; RADIOMICS; CRITERIA;
D O I
10.1186/s13058-020-01291-w
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background For breast cancer patients undergoing neoadjuvant chemotherapy (NAC), pathologic complete response (pCR; no invasive or in situ) cannot be assessed non-invasively so all patients undergo surgery. The aim of our study was to develop and validate a radiomics classifier that classifies breast cancer pCR post-NAC on MRI prior to surgery. Methods This retrospective study included women treated with NAC for breast cancer from 2014 to 2016 with (1) pre- and post-NAC breast MRI and (2) post-NAC surgical pathology report assessing response. Automated radiomics analysis of pre- and post-NAC breast MRI involved image segmentation, radiomics feature extraction, feature pre-filtering, and classifier building through recursive feature elimination random forest (RFE-RF) machine learning. The RFE-RF classifier was trained with nested five-fold cross-validation using (a) radiomics only (model 1) and (b) radiomics and molecular subtype (model 2). Class imbalance was addressed using the synthetic minority oversampling technique. Results Two hundred seventy-three women with 278 invasive breast cancers were included; the training set consisted of 222 cancers (61 pCR, 161 no-pCR; mean age 51.8 years, SD 11.8), and the independent test set consisted of 56 cancers (13 pCR, 43 no-pCR; mean age 51.3 years, SD 11.8). There was no significant difference in pCR or molecular subtype between the training and test sets. Model 1 achieved a cross-validation AUROC of 0.72 (95% CI 0.64, 0.79) and a similarly accurate (P = 0.1) AUROC of 0.83 (95% CI 0.71, 0.94) in both the training and test sets. Model 2 achieved a cross-validation AUROC of 0.80 (95% CI 0.72, 0.87) and a similar (P = 0.9) AUROC of 0.78 (95% CI 0.62, 0.94) in both the training and test sets. Conclusions This study validated a radiomics classifier combining radiomics with molecular subtypes that accurately classifies pCR on MRI post-NAC.
引用
收藏
页数:11
相关论文
共 46 条
[1]   Technical Note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research [J].
Apte, Aditya P. ;
Iyer, Aditi ;
Crispin-Ortuzar, Mireia ;
Pandya, Rutu ;
van Dijk, Lisanne V. ;
Spezi, Emiliano ;
Thor, Maria ;
Um, Hyemin ;
Veeraraghavan, Harini ;
Oh, Jung Hun ;
Shukla-Dave, Amita ;
Deasy, Joseph O. .
MEDICAL PHYSICS, 2018, 45 (08) :3713-3720
[2]   Breast DCE-MRI Kinetic Heterogeneity Tumor Markers: Preliminary Associations With Neoadjuvant Chemotherapy Response [J].
Ashraf, Ahmed ;
Gaonkar, Bilwaj ;
Mies, Carolyn ;
DeMichele, Angela ;
Rosen, Mark ;
Davatzikos, Christos ;
Kontos, Despina .
TRANSLATIONAL ONCOLOGY, 2015, 8 (03) :154-162
[3]   Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer [J].
Berg, WA ;
Gutierrez, L ;
NessAiver, MS ;
Carter, WB ;
Bhargavan, M ;
Lewis, RS ;
Ioffe, OB .
RADIOLOGY, 2004, 233 (03) :830-849
[4]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[5]   Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer [J].
Braman, Nathaniel ;
Prasanna, Prateek ;
Whitney, Jon ;
Singh, Salendra ;
Beig, Niha ;
Etesami, Maryam ;
Bates, David D. B. ;
Gallagher, Katherine ;
Bloch, B. Nicolas ;
Vulchi, Manasa ;
Turk, Paulette ;
Bera, Kaustav ;
Abraham, Jame ;
Sikov, William M. ;
Somlo, George ;
Harris, Lyndsay N. ;
Gilmore, Hannah ;
Plecha, Donna ;
Varadan, Vinay ;
Madabhushi, Anant .
JAMA NETWORK OPEN, 2019, 2 (04)
[6]   Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI [J].
Braman, Nathaniel M. ;
Etesami, Maryam ;
Prasanna, Prateek ;
Dubchuk, Christina ;
Gilmore, Hannah ;
Tiwari, Pallavi ;
Pletcha, Donna ;
Madabhushi, Anant .
BREAST CANCER RESEARCH, 2017, 19
[7]  
Breiman L., 2001, IEEE Trans. Broadcast., V45, P5
[8]   Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set [J].
Cain, Elizabeth Hope ;
Saha, Ashirbani ;
Harowicz, Michael R. ;
Marks, Jeffrey R. ;
Marcom, P. Kelly ;
Mazurowski, Maciej A. .
BREAST CANCER RESEARCH AND TREATMENT, 2019, 173 (02) :455-463
[9]   Features from Computerized Texture Analysis of Breast Cancers at Pretreatment MR Imaging Are Associated with Response to Neoadjuvant Chemotherapy [J].
Chamming's, Foucauld ;
Ueno, Yoshiko ;
Ferre, Romuald ;
Kao, Ellen ;
Jannot, Anne-Sophie ;
Chong, Jaron ;
Omeroglu, Atilla ;
Mesurolle, Benoit ;
Reinhold, Caroline ;
Gallix, Benoit .
RADIOLOGY, 2018, 286 (02) :412-420
[10]   Breast Cancer: Early Prediction of Response to Neoadjuvant Chemotherapy Using Parametric Response Maps for MR Imaging [J].
Cho, Nariya ;
Im, Seock-Ah ;
Park, In-Ae ;
Lee, Kyung-Hun ;
Li, Mulan ;
Han, Wonshik ;
Noh, Dong-Young ;
Moon, Woo Kyung .
RADIOLOGY, 2014, 272 (02) :385-396