A new defect-correction method for the stationary Navier-Stokes equations based on local Gauss integration

被引:6
作者
Huang, Pengzhan [1 ]
He, Yinnian [1 ,2 ]
Feng, Xinlong [2 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
关键词
Navier-Stokes equations; defect correction; local Gauss integration; stability; error estimate; FINITE-ELEMENT APPROXIMATION; POSTERIORI ERROR ESTIMATORS; REGULARITY; FLOW;
D O I
10.1002/mma.1618
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new defect-correction method for the stationary NavierStokes equations based on local Gauss integration is considered in this paper. In both defect step and correction step, a locally stabilized technique based on the Gaussian quadrature rule is used. Moreover, stability and convergence of the presented method are deduced. Finally, we provide some numerical experiments to show good stability and effectiveness properties of the presented method. Copyright (C) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:1033 / 1046
页数:14
相关论文
共 26 条
[21]   DEFECT CORRECTION PRINCIPLE AND DISCRETIZATION METHODS [J].
STETTER, HJ .
NUMERISCHE MATHEMATIK, 1978, 29 (04) :425-443
[22]   FINITE-ELEMENT APPROXIMATION OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH SLIP BOUNDARY-CONDITION .2. [J].
VERFURTH, R .
NUMERISCHE MATHEMATIK, 1991, 59 (06) :615-636
[23]   A POSTERIORI ERROR ESTIMATORS FOR THE STOKES EQUATIONS-II NON-CONFORMING DISCRETIZATIONS [J].
VERFURTH, R .
NUMERISCHE MATHEMATIK, 1991, 60 (02) :235-249
[24]   A POSTERIORI ERROR ESTIMATORS FOR THE STOKES EQUATIONS [J].
VERFURTH, R .
NUMERISCHE MATHEMATIK, 1989, 55 (03) :309-325
[25]   A new defect correction method for the Navier-Stokes equations at high Reynolds numbers [J].
Wang, Kun .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (11) :3252-3264
[26]   A finite element variational multiscale method for incompressible flows based on two local gauss integrations [J].
Zheng, Haibiao ;
Hou, Yanren ;
Shi, Feng ;
Song, Lina .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (16) :5961-5977