A Machine Learning-based Approach for Failure Prediction at Cell Level based on Wafer Acceptance Test Parameters

被引:5
作者
Chen, Xiang [1 ]
Zhao, Yi [1 ]
Lu, Hongliang [1 ]
Shao, Xiaoqiang [1 ]
Chen, Cheng [1 ]
Huang, Yu [1 ]
机构
[1] Huawei Technol Co Ltd, Shenzhen, Peoples R China
来源
2021 IEEE MICROELECTRONICS DESIGN & TEST SYMPOSIUM (MDTS) | 2021年
关键词
Machine learning; Feature selection; Failure prediction; Wafer Acceptance Test; Diagnosis; Yield;
D O I
10.1109/MDTS52103.2021.9476151
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Wafer Acceptance Test (WAT) or commonly known as Process Control Monitoring (PCM) includes numerous testing items that have many important applications, such as yield improvement and production cost control. The prediction of wafer yield based on WAT parameters has been successfully employed to reduce production costs spent on the circuit probing process. However, the relationship between WAT and subsequent diagnosis reports has not been sufficiently explored yet. This paper proposes a learning-based framework for failure prediction at cell level from WAT data, including various techniques for feature selection and handling imbalanced classes. Based on the selected parameters, machine learning models are employed to predict the failure of a given cell. The potential of the proposed methodology is evaluated over a set of industrial data. Experimental results demonstrate that our methodology can provide accurate test predictions (0.95+ accuracy, F1-score, and Area Under the Receiver Operating Characteristic curve (AUC-ROC)).
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Sensor Failure Tolerable Machine Learning-Based Food Quality Prediction Model
    Kaya, Aydin
    Keceli, Ali Seydi
    Catal, Cagatay
    Tekinerdogan, Bedir
    SENSORS, 2020, 20 (11) : 1 - 18
  • [22] Machine learning-based test smell detection
    Pontillo, Valeria
    d'Aragona, Dario Amoroso
    Pecorelli, Fabiano
    Di Nucci, Dario
    Ferrucci, Filomena
    Palomba, Fabio
    EMPIRICAL SOFTWARE ENGINEERING, 2024, 29 (02)
  • [23] Machine Learning-Based Prediction of Air Quality
    Liang, Yun-Chia
    Maimury, Yona
    Chen, Angela Hsiang-Ling
    Juarez, Josue Rodolfo Cuevas
    APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 17
  • [24] Machine learning-based cache miss prediction
    Jelacic, Edin
    Seceleanu, Cristina
    Xiong, Ning
    Backeman, Peter
    Yaghoobi, Sharifeh
    Seceleanu, Tiberiu
    INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR TECHNOLOGY TRANSFER, 2025, : 53 - 80
  • [25] A MACHINE LEARNING-BASED TOURIST PATH PREDICTION
    Zheng, Siwen
    Liu, Yu
    Ouyang, Zhenchao
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 38 - 42
  • [26] A machine learning-based analytical framework for employee turnover prediction
    Wang, Xinlei
    Zhi, Jianing
    JOURNAL OF MANAGEMENT ANALYTICS, 2021, 8 (03) : 351 - 370
  • [27] Machine Learning-based Water Potability Prediction
    Alnaqeb, Reem
    Alrashdi, Fatema
    Alketbi, Khuloud
    Ismail, Heba
    2022 IEEE/ACS 19TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2022,
  • [28] Supervised Machine Learning-Based Prediction of COVID-19
    Atta-ur-Rahman
    Sultan, Kiran
    Naseer, Iftikhar
    Majeed, Rizwan
    Musleh, Dhiaa
    Gollapalli, Mohammed Abdul Salam
    Chabani, Sghaier
    Ibrahim, Nehad
    Siddiqui, Shahan Yamin
    Khan, Muhammad Adnan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (01): : 21 - 34
  • [29] Machine Learning-Based Risk Prediction of Discharge Status for Sepsis
    Cai, Kaida
    Lou, Yuqing
    Wang, Zhengyan
    Yang, Xiaofang
    Zhao, Xin
    ENTROPY, 2024, 26 (08)
  • [30] Machine learning-based test smell detection
    Valeria Pontillo
    Dario Amoroso d’Aragona
    Fabiano Pecorelli
    Dario Di Nucci
    Filomena Ferrucci
    Fabio Palomba
    Empirical Software Engineering, 2024, 29