On the recovery of traveling water waves with vorticity from the pressure at the bed

被引:0
作者
Hur, Vera Mikyoung [1 ]
Livesay, Michael R. [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Water waves; Pressure; Recovery; Vorticity; Tokes; Solitary; STOKES CONJECTURE; EXISTENCE; SYMMETRY; PROFILES; SURFACE;
D O I
10.1016/j.euromechflu.2016.08.003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We propose higher-order approximation formulae recovering the surface elevation from the pressure at the bed and the background shear flow, for small-amplitude Stokes and solitary water waves. They offer improvements over the pressure transfer function and the hydrostatic approximation. The formulae compare reasonably well with the asymptotic approximations of the exact relation between the pressure at the bed and the surface wave in the zero vorticity case, but they incorporate the effects of vorticity through the solutions of the Rayleigh equation. Several examples are discussed. (C) 2016 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:99 / 109
页数:11
相关论文
共 50 条
[1]   ON THE STOKES CONJECTURE FOR THE WAVE OF EXTREME FORM [J].
AMICK, CJ ;
FRAENKEL, LE ;
TOLAND, JF .
ACTA MATHEMATICA, 1982, 148 :193-214
[2]  
AMICK CJ, 1981, ARCH RATION MECH AN, V76, P9, DOI 10.1007/BF00250799
[3]  
BEALE JT, 1977, COMMUN PUR APPL MATH, V30, P373
[4]  
Biesel F., 1982, P 11 COAST ENG C CAP, P129
[5]   MEASURING WAVES WITH PRESSURE TRANSDUCERS [J].
BISHOP, CT ;
DONELAN, MA .
COASTAL ENGINEERING, 1987, 11 (04) :309-328
[6]  
Buffoni B., 2003, PRIN SER APPL MATH, V9, DOI 10.1515/9781400884339
[7]   LONG WAVES IN RUNNING WATER [J].
BURNS, JC .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1953, 49 (04) :695-706
[8]  
CAVALERI L, 1980, OCEANOL ACTA, V3, P339
[9]  
Chen R. M., 2016, J MATH FLUID MECH
[10]   Recovery of steady periodic wave profiles from pressure measurements at the bed [J].
Clamond, D. ;
Constantin, A. .
JOURNAL OF FLUID MECHANICS, 2013, 714 :463-475