Modeling gene-covariate interactions in sparse regression with group structure for genome-wide association studies

被引:2
作者
Li, Yun [1 ,2 ]
O'Connor, George T. [3 ]
Dupuis, Josee [2 ]
Kolaczyk, Eric [1 ]
机构
[1] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
[2] Boston Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02118 USA
[3] Boston Univ, Sch Med, Ctr Pulm, Boston, MA 02118 USA
关键词
gene-environment/covariate interaction; genome-wide association studies; sparse regression; VARIABLE SELECTION; LINEAR-MODELS; LASSO; REGULARIZATION; BRIDGE;
D O I
10.1515/sagmb-2014-0073
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In genome-wide association studies (GWAS), it is of interest to identify genetic variants associated with phenotypes. For a given phenotype, the associated genetic variants are usually a sparse subset of all possible variants. Traditional Lasso-type estimation methods can therefore be used to detect important genes. But the relationship between genotypes at one variant and a phenotype may be influenced by other variables, such as sex and life style. Hence it is important to be able to incorporate gene-covariate interactions into the sparse regression model. In addition, because there is biological knowledge on the manner in which genes work together in structured groups, it is desirable to incorporate this information as well. In this paper, we present a novel sparse regression methodology for gene-covariate models in association studies that not only allows such interactions but also considers biological group structure. Simulation results show that our method substantially outperforms another method, in which interaction is considered, but group structure is ignored. Application to data on total plasma immunoglobulin E (IgE) concentrations in the Framingham Heart Study (FHS), using sex and smoking status as covariates, yields several potentially interesting gene-covariate interactions.
引用
收藏
页码:265 / 277
页数:13
相关论文
共 30 条
[1]  
[Anonymous], 2010, ARXIV10010736V1
[2]   SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR [J].
Bickel, Peter J. ;
Ritov, Ya'acov ;
Tsybakov, Alexandre B. .
ANNALS OF STATISTICS, 2009, 37 (04) :1705-1732
[3]  
Candes E, 2007, ANN STAT, V35, P2313, DOI 10.1214/009053606000001523
[4]   Using Biological Knowledge to Discover Higher Order Interactions in Genetic Association Studies [J].
Chen, Gary K. ;
Thomas, Duncan C. .
GENETIC EPIDEMIOLOGY, 2010, 34 (08) :863-878
[5]   Bayesian variable selection with related predictors [J].
Chipman, H .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1996, 24 (01) :17-36
[6]   Variable Selection With the Strong Heredity Constraint and Its Oracle Property [J].
Choi, Nam Hee ;
Li, William ;
Zhu, Ji .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) :354-364
[7]   An integrated encyclopedia of DNA elements in the human genome [J].
Dunham, Ian ;
Kundaje, Anshul ;
Aldred, Shelley F. ;
Collins, Patrick J. ;
Davis, CarrieA. ;
Doyle, Francis ;
Epstein, Charles B. ;
Frietze, Seth ;
Harrow, Jennifer ;
Kaul, Rajinder ;
Khatun, Jainab ;
Lajoie, Bryan R. ;
Landt, Stephen G. ;
Lee, Bum-Kyu ;
Pauli, Florencia ;
Rosenbloom, Kate R. ;
Sabo, Peter ;
Safi, Alexias ;
Sanyal, Amartya ;
Shoresh, Noam ;
Simon, Jeremy M. ;
Song, Lingyun ;
Trinklein, Nathan D. ;
Altshuler, Robert C. ;
Birney, Ewan ;
Brown, James B. ;
Cheng, Chao ;
Djebali, Sarah ;
Dong, Xianjun ;
Dunham, Ian ;
Ernst, Jason ;
Furey, Terrence S. ;
Gerstein, Mark ;
Giardine, Belinda ;
Greven, Melissa ;
Hardison, Ross C. ;
Harris, Robert S. ;
Herrero, Javier ;
Hoffman, Michael M. ;
Iyer, Sowmya ;
Kellis, Manolis ;
Khatun, Jainab ;
Kheradpour, Pouya ;
Kundaje, Anshul ;
Lassmann, Timo ;
Li, Qunhua ;
Lin, Xinying ;
Marinov, Georgi K. ;
Merkel, Angelika ;
Mortazavi, Ali .
NATURE, 2012, 489 (7414) :57-74
[8]   Sure independence screening for ultrahigh dimensional feature space [J].
Fan, Jianqing ;
Lv, Jinchi .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :849-883
[9]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[10]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22