Global spatiotemporally continuous MODIS land surface temperature dataset

被引:68
作者
Yu, Pei [1 ,2 ]
Zhao, Tianjie [2 ]
Shi, Jiancheng [3 ]
Ran, Youhua [4 ]
Jia, Li [2 ]
Ji, Dabin [2 ]
Xue, Huazhu [1 ]
机构
[1] Henan Polytech Univ, Sch Surveying & Land Informat Engn, Jiaozuo, Henan, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing, Peoples R China
[3] Chinese Acad Sci, Natl Space Sci Ctr, Beijing, Peoples R China
[4] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
POLAR ORBITING SATELLITES; EDDY-COVARIANCE; DIURNAL CYCLE; RIVER-BASIN; EVAPOTRANSPIRATION; RECONSTRUCTION; VALIDATION; INTERPOLATION; DROUGHT; MODEL;
D O I
10.1038/s41597-022-01214-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Land surface temperature (LST) plays a critical role in land surface processes. However, as one of the effective means for obtaining global LST observations, remote sensing observations are inherently affected by cloud cover, resulting in varying degrees of missing data in satellite-derived LST products. Here, we propose a solution. First, the data interpolating empirical orthogonal functions (DINEOF) method is used to reconstruct invalid LSTs in cloud-contaminated areas into ideal, clear-sky LSTs. Then, a cumulative distribution function (CDF) matching-based method is developed to correct the ideal, clear-sky LSTs to the real LSTs. Experimental results prove that this method can effectively reconstruct missing LST data and guarantee acceptable accuracy in most regions of the world, with RMSEs of 1-2 K and R values of 0.820-0.996 under ideal, clear-sky conditions and RMSEs of 4-7 K and R values of 0.811-0.933 under all weather conditions. Finally, a spatiotemporally continuous MODIS LST dataset at 0.05 degrees latitude/longitude grids is produced based on the above method.
引用
收藏
页数:15
相关论文
共 65 条
[1]   Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions:: application to the Adriatic Sea surface temperature [J].
Alvera-Azcárate, A ;
Barth, A ;
Rixen, M ;
Beckers, JM .
OCEAN MODELLING, 2005, 9 (04) :325-346
[2]  
Alvera-Azcárate A, 2011, MEDITERR MAR SCI, V12, P5
[3]  
Anagnostou EN, 1999, J APPL METEOROL, V38, P1590, DOI 10.1175/1520-0450(1999)038<1590:SAOSMM>2.0.CO
[4]  
2
[5]   Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX'08 field campaign [J].
Anderson, Martha C. ;
Kustas, William P. ;
Alfieri, Joseph G. ;
Gao, Feng ;
Hain, Christopher ;
Prueger, John H. ;
Evett, Steven ;
Colaizzi, Paul ;
Howell, Terry ;
Chavez, Jose L. .
ADVANCES IN WATER RESOURCES, 2012, 50 :162-177
[6]   Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources [J].
Anderson, Martha C. ;
Allen, Richard G. ;
Morse, Anthony ;
Kustas, William P. .
REMOTE SENSING OF ENVIRONMENT, 2012, 122 :50-65
[7]  
ATLAS D, 1990, J APPL METEOROL, V29, P1120, DOI 10.1175/1520-0450(1990)029<1120:CTRRRR>2.0.CO
[8]  
2
[9]   ERA-Interim/Land: a global land surface reanalysis data set [J].
Balsamo, G. ;
Albergel, C. ;
Beljaars, A. ;
Boussetta, S. ;
Brun, E. ;
Cloke, H. ;
Dee, D. ;
Dutra, E. ;
Munoz-Sabater, J. ;
Pappenberger, F. ;
de Rosnay, P. ;
Stockdale, T. ;
Vitart, F. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2015, 19 (01) :389-407
[10]  
Beckers JM, 2003, J ATMOS OCEAN TECH, V20, P1839, DOI 10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO