The boundary value problem for one class of higher-order nonlinear partial differential equations

被引:1
作者
Kharibegashvili, Sergo [1 ,2 ]
Midodashvili, Bidzina [3 ,4 ]
机构
[1] I Javakhishvili Tbilisi State Univ, A Razmadze Math Inst, 6 Tamarashvili Str, GE-0186 Tbilisi, Georgia
[2] Georgian Tech Univ, Dept Math, 77 M Kostava Str, GE-0175 Tbilisi, Georgia
[3] I Javakhishvili Tbilisi State Univ, Fac Exact & Nat Sci, 13 Univ Str, GE-0186 Tbilisi, Georgia
[4] Gori State Teaching Univ, Fac Educ Exact & Nat Sci, 51 Chavchavadze Str, Gori, Georgia
关键词
Nonlinear higher-order equations; Schaefer's fixed point theorem; existence; uniqueness and nonexistence of solutions; GLOBAL-SOLUTIONS; NONEXISTENCE; EXISTENCE;
D O I
10.1515/gmj-2021-2139
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the boundary value problem for one class of higher-order nonlinear partial differential equations. We prove theorems on existence, uniqueness and nonexistence of solutions of this problem.
引用
收藏
页码:387 / 395
页数:9
相关论文
共 18 条
[1]   Existence and non-existence of global solutions of the Cauchy problem for higher order semilinear pseudo-hyperbolic equations [J].
Aliev, Akbar B. ;
Lichaei, Bijan H. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (7-8) :3275-3288
[2]  
Chen Xiangying, 2001, Applied Mathematics. Series B, A Journal of Chinese Universities, V16, P251
[3]  
Evans LC., 1998, Partial Differential Equations
[4]  
Fucik S., 1980, Nonlinear Differential Equations
[5]  
Galaktionov VA, 2015, MONOGR RES NOTES MAT
[6]  
Hormander L., 1994, ANAL LINEAR PARTIAL
[7]   A boundary value problem for higher-order semilinear partial differential equations [J].
Kharibegashvili, S. ;
Midodashvili, B. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (05) :766-776
[8]  
Kharibegashvili S, 2009, MEM DIFFER EQU MATH, V46, P1
[9]  
Kharibegashvili S., 2017, P INT WORKSH QUAL 20, P81
[10]  
Kharibegashvili S., 2019, INT WORKSH QUAL THEO, P96