Quasilinear asymptotically periodic Schrodinger-Poisson system with subcritical growth

被引:1
作者
Zhang, Jing [1 ]
Guo, Lifeng [2 ]
Yang, Miaomiao [3 ]
机构
[1] Inner Mongolia Normal Univ, Math Sci Coll, Hohhot, Peoples R China
[2] Northeast Petr Univ, Sch Math & Stat, Daqing, Peoples R China
[3] Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasilinear Schrodinger equation; Asymptotically periodic; Mountain pass theorem; STATE SOLUTION; GROUND-STATES; EXISTENCE; EQUATIONS; BEHAVIOR; MAXWELL; SPHERES; WAVES;
D O I
10.1186/s13661-020-01404-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is establishing the existence of a nontrivial solution for the following quasilinear Schrodinger-Poisson system: {-Delta u+V(x)u-u Delta(u(2))+K(x)phi(x)u=g(x,u), x is an element of R-3, -Delta phi = K(x)u(2), x is an element of R-3, u is an element of H-1(R-3), u > 0, where V, K, gare continuous functions. To overcome the technical difficulties caused by the quasilinear term, we change the variable to guarantee the feasibility of applying the mountain pass theorem to solve the above problems. We use the mountain pass theorem and the concentration-compactness principle as basic tools to gain a nontrivial solution the system possesses under an asymptotic periodicity condition at infinity.
引用
收藏
页数:24
相关论文
共 47 条
  • [1] Schrodinger-Poisson equations without Ambrosetti-Rabinowitz condition
    Alves, Claudianor O.
    Soares Souto, Marco Aurelio
    Soares, Sergio H. M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) : 584 - 592
  • [2] On nonlinear perturbations of a periodic elliptic problem in R2 involving critical growth
    Alves, CO
    do O, JM
    Miyagaki, OH
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (05) : 781 - 791
  • [3] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [4] Ground state solutions for the nonlinear Schrodinger-Maxwell equations
    Azzollini, A.
    Pomponio, A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) : 90 - 108
  • [5] Existence and asymptotic behaviour of standing waves for quasilinear Schrodinger-Poisson systems in R3
    Benmlih, Khalid
    Kavian, Otared
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03): : 449 - 470
  • [6] BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
  • [7] Positive solutions for some non-autonomous Schrodinger-Poisson systems
    Cerami, Giovanna
    Vaira, Giusi
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) : 521 - 543
  • [8] The existence of sign-changing solution for a class of quasilinear Schrodinger-Poisson systems via perturbation method
    Chen, Lizhen
    Feng, Xiaojing
    Hao, Xinan
    [J]. BOUNDARY VALUE PROBLEMS, 2019, 2019 (01)
  • [9] On the planar Schrodinger-Poisson system with the axially symmetric potential
    Chen, Sitong
    Tang, Xianhua
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (03) : 945 - 976
  • [10] Colin GM., 2003, COMMUN APPL ANAL, V7, P417