A Blow-up Criterion of Strong Solutions to the Compressible Viscous Heat-Conductive Flows with Zero Heat Conductivity

被引:4
作者
Fan, Jishan [2 ]
Zhou, Yong [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Nanjing Forestry Univ, Dept Appl Math, Nanjing 210037, Jiangsu, Peoples R China
关键词
Blow-up criterion; Navier-Stokes equations; Zero heat conductivity; NAVIER-STOKES EQUATIONS; FLUIDS; REGULARITY; BOUNDARY; MOTION;
D O I
10.1007/s10440-011-9645-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the compressible Navier-Stokes equations of viscous heat-conductive fluids in a periodic domain T-3 with zero heat conductivity k = 0. We prove a blow-up criterion for the local strong solutions in terms of the temperature and positive density, similar to the Beale-Kato-Majda criterion for ideal incompressible flows.
引用
收藏
页码:317 / 327
页数:11
相关论文
共 27 条
[1]   ON BMO REGULARITY FOR LINEAR ELLIPTIC-SYSTEMS [J].
ACQUISTAPACE, P .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1992, 161 :231-269
[2]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[3]  
[Anonymous], 1980, J MATH KYOTO U
[4]   Existence results for viscous polytropic fluids with vacuum [J].
Cho, Yonggeun ;
Kim, Hyunseok .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (02) :377-411
[5]   Blow-up criteria for the Navier-Stokes equations of compressible fluids [J].
Fan, Jishan ;
Jiang, Song .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2008, 5 (01) :167-185
[6]   A blow-up criterion for compressible viscous heat-conductive flows [J].
Fan, Jishan ;
Jiang, Song ;
Ou, Yaobin .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01) :337-350
[7]  
Feireisl E, 2004, INDIANA U MATH J, V53, P1705
[8]  
Feireisl E., 2004, Dynamics of Viscous Compressible Fluids (Oxford Lecture Series in Mathematics and Its Applications vol 26)
[9]   On the Existence of Globally Defined Weak Solutions to the Navier-Stokes Equations [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Petzeltova, Hana .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) :358-392
[10]  
Haspot B., 2010, ARXIV10011581