Extreme points, exposed points, differentiability points in CL-spaces

被引:7
作者
Cheng, Li-Xin [1 ]
Li, Min [1 ]
机构
[1] Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China
关键词
D O I
10.1090/S0002-9939-08-09220-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a property of geometric and topological nature of Gateaux differentiability points and Frechet differentiability points of almost CL-spaces. More precisely, if we denote by M a maximal convex set of the unit sphere of a CL-space X, and by CM the cone generated by M, then all Gateaux differentiability points of X are just boolean OR n-s(CM), and all Frechet differentiability points of X are boolean OR int(C-M) (where n-s(C-M) denotes the non-support points set of C-M).
引用
收藏
页码:2445 / 2451
页数:7
相关论文
共 24 条
[1]  
Acosta M., 1990, EXTRACTA MATH, V5, P138
[2]  
[Anonymous], LECT NOTES PURE APPL
[3]  
[Anonymous], HDB GEOMETRY BANACH
[4]  
[Anonymous], 2001, HDB GEOMETRY BANACH
[5]  
[Anonymous], 2000, GEOMETRIC NONLINEAR
[6]  
Clarkson JA, 1936, T AM MATH SOC, V40, P396
[7]  
Deville R., 1993, PITMAN MONOGRAPHS SU, V64
[8]  
Diestel J., 1975, LECT NOTES MATH, V485
[9]  
Diestel J., 1977, VECTOR MEASURES MATH
[10]  
DIESTEL J, 1984, GRADUATE TEXTS MATH, V92