CoFe Alloy-Decorated Interlayer with a Synergistic Catalytic Effect Improves the Electrochemical Kinetics of Polysulfide Conversion

被引:43
作者
Gao, Ning [1 ,2 ]
Li, Bao [3 ]
Zhang, Yujiao [1 ]
Li, Wenbiao [1 ]
Li, Xue [1 ]
Zhao, Jie [1 ,2 ]
Yue, Wence [4 ]
Xing, Zhenyu
Wang, Bao [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, State Key Lab Biochem Engn, Beijing 100190, Peoples R China
[2] Nanjing IPE Inst Green Mfg Ind, Nanjing 211135, Peoples R China
[3] Henan Normal Univ, Sch Chem & Chem Engn, Xinxiang 453007, Henan, Peoples R China
[4] Univ Jinan, Sch Chem & Chem Engn, Jinan 250022, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-sulfur batteries; interlayer; CoFe alloy electrocatalyst; bacterial cellulose; electrochemical kinetics; LITHIUM-SULFUR; CARBON; PERFORMANCE; NITROGEN; NANOSHEETS; CELLULOSE;
D O I
10.1021/acsami.1c17374
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Good electrical conductivity, strong catalytic activity, high interaction with lithium polysulfides (LIPSs), simple method, and low cost should be considered for the design and preparation of high-performance electrochemical catalysts that catalyze the conversion of LIPSs. In this work, we designed a bimetallic alloyed multifunctional interlayer with multiple adsorption/catalysis sites. The interwoven carbon fibers derived from bacterial cellulose (BC) not only contribute to reducing metal ions to metals but also confine the growth of Co-Fe alloys formed in situ. The metal supported on carbon is very effective for the conversion of LIPSs due to its high adsorption and catalytic sites. In addition, the synergistic effect between Fe and Co species leads to excellent bifunctional catalytic activity. Through detailed electrochemical analysis and theoretical calculations, we revealed that CoFe@CNFs has superior electrocatalytic activity, and the lithium-sulfur (Li-S) batteries with a catalytic interlayer can deliver satisfactory rate and cycle performance. At a high current density of 2C, the discharge capacity can still reach 627 mAh g(-1). At a current density of 1C, the Coulombic efficiency is maintained at a level close to 100% during the whole cycle process and a satisfying low capacity decay of 0.08% per cycle. More importantly, even if the ambient temperature drops to 0 degrees C, the Li-S battery using the interlayer can still be charged and discharged normally and shows acceptable discharge capacity, which shows that it has good rate kinetics.
引用
收藏
页码:57193 / 57203
页数:11
相关论文
共 60 条
[1]   MOF-derived conductive carbon nitrides for separator-modified Li-S batteries and flexible supercapacitors [J].
Cai, Jingsheng ;
Song, Yingze ;
Chen, Xiang ;
Sun, Zhongti ;
Yi, Yuyang ;
Sun, Jingyu ;
Zhang, Qiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (04) :1757-1766
[2]   Separator Modified by Cobalt-Embedded Carbon Nanosheets Enabling Chemisorption and Catalytic Effects of Polysulfides for High-Energy-Density Lithium-Sulfur Batteries [J].
Cheng, Zhibin ;
Pan, Hui ;
Chen, Jinqing ;
Meng, Xueping ;
Wang, Ruihu .
ADVANCED ENERGY MATERIALS, 2019, 9 (32)
[3]   Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction [J].
Deng, Jiao ;
Ren, Pengju ;
Deng, Dehui ;
Yu, Liang ;
Yang, Fan ;
Bao, Xinhe .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (06) :1919-1923
[4]   Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries [J].
Du, Zhenzhen ;
Chen, Xingjia ;
Hu, Wei ;
Chuang, Chenghao ;
Xie, Shuai ;
Hu, Ajuan ;
Yan, Wensheng ;
Kong, Xianghua ;
Wu, Xiaojun ;
Ji, Hengxing ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (09) :3977-3985
[5]   High-Performance and Low-Temperature Lithium-Sulfur Batteries: Synergism of Thermodynamic and Kinetic Regulation [J].
Fan, Chao-Ying ;
Zheng, Yan-Ping ;
Zhang, Xiao-Hua ;
Shi, Yan-Hong ;
Liu, Si-Yu ;
Wang, Han-Chi ;
Wu, Xing-Long ;
Sun, Hai-Zhu ;
Zhang, Jing-Ping .
ADVANCED ENERGY MATERIALS, 2018, 8 (18)
[6]   Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation [J].
Fan, Ke ;
Chen, Hong ;
Ji, Yongfei ;
Huang, Hui ;
Claesson, Per Martin ;
Daniel, Quentin ;
Philippe, Bertrand ;
Rensmo, Hakan ;
Li, Fusheng ;
Luo, Yi ;
Sun, Licheng .
NATURE COMMUNICATIONS, 2016, 7
[7]   Functionalized Boron Nitride Nanosheets/Graphene Interlayer for Fast and Long-Life Lithium-Sulfur Batteries [J].
Fan, Ye ;
Yang, Zhi ;
Hua, Wuxing ;
Liu, Dan ;
Tao, Tao ;
Rahman, Md Mokhlesur ;
Lei, Weiwei ;
Huang, Shaoming ;
Chen, Ying .
ADVANCED ENERGY MATERIALS, 2017, 7 (13)
[8]   Polyacrylonitrile-induced formation of core-shell carbon nanocages: Enhanced redox kinetics towards polysulfides by confined catalysis in Li-S batteries [J].
Gao, Hongcheng ;
Ning, Shunlian ;
Zhou, Yuan ;
Men, Shuang ;
Kang, Xiongwu .
CHEMICAL ENGINEERING JOURNAL, 2021, 408
[9]   Cobalt-Doped SnS2 with Dual Active Centers of Synergistic Absorption-Catalysis Effect for High-S Loading Li-S Batteries [J].
Gao, Xuejie ;
Yang, Xiaofei ;
Li, Minsi ;
Sun, Qian ;
Liang, Jianneng ;
Luo, Jing ;
Wang, Jiwei ;
Li, Weihan ;
Liang, Jianwen ;
Liu, Yulong ;
Wang, Sizhe ;
Hu, Yongfeng ;
Xiao, Qunfeng ;
Li, Ruying ;
Sham, Tsun-Kong ;
Sun, Xueliang .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (08)
[10]   All-Purpose Electrode Design of Flexible Conductive Scaffold toward High-Performance Li-S Batteries [J].
He, Yusen ;
Li, Mingjun ;
Zhang, Yongguang ;
Shan, Zhenzhen ;
Zhao, Yan ;
Li, Jingde ;
Liu, Guihua ;
Liang, Chunyong ;
Bakenov, Zhumabay ;
Li, Qiang .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (19)