UNSUPERVISED FUZZY C-MEANS CLUSTERING FOR MOTOR IMAGERY EEG RECOGNITION

被引:0
作者
Hsu, Wei-Yen [1 ]
Lin, Chi-Yuan [2 ]
Kuo, Wen-Feng [3 ]
Liou, Michelle [1 ]
Sun, Yung-Nien [4 ]
Tsai, Arthur Chih-Hsin [1 ]
Hsu, Hsien-Jen [5 ]
Chen, Po-Hsun [6 ]
Chen, I-Ru [7 ]
机构
[1] Acad Sinica, Inst Stat Sci, Taipei 115, Taiwan
[2] Natl Chin Yi Univ Technol, Dept Comp Sci & Informat Engn, Taiping City 411, Taichung, Taiwan
[3] Natl Cheng Kung Univ Hosp, Dept Med Informat, Tainan 701, Taiwan
[4] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 701, Taiwan
[5] Natl Cheng Kung Univ, Inst Mfg Informat & Syst, Tainan 701, Taiwan
[6] Natl Cheng Kung Univ, Dept Elect Engn, Tainan 701, Taiwan
[7] Fu Jen Catholic High Sch, Dept Math, Chia I, Taiwan
来源
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL | 2011年 / 7卷 / 08期
关键词
Brain-computer interface (BCI); Electroencephalogram (EEG); Motor imagery (MI); Fractal dimension (FD); Fuzzy c-means (FCM); ABNORMAL SIGNAL-DETECTION; FRACTAL FEATURES; WAVELET; CLASSIFICATION; ALGORITHM; INTERFACE; MACHINE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, an electroencephalogram (EEG) recognition system is proposed on single-trial motor imagery (MI) data. Fuzzy c-means (FCM) clustering is used for the unsupervised recognition of left and right MI data by combining with selected active segments and multiresolution fractal features. Active segment selection is used to detect active segments situated at most discriminable areas in the time-frequency domain. The multiresolution fractal features are then extracted by using modified fractal dimension from wavelet data. Finally, FCM clustering is used as the discriminant of MI features. The FCM clustering is an adaptive approach suitable for the clustering of non-stationary biomedical signals. Compared with several popular supervised classifiers, FCM clustering provides a potential for BCI application.
引用
收藏
页码:4965 / 4976
页数:12
相关论文
共 39 条
  • [1] [Anonymous], 1999, FISCH SPELLMANNS EEG
  • [2] Bezdek JC., 1973, Fuzzy Mathematics in Pattern Classification
  • [3] Chen BH, 2010, INT J INNOV COMPUT I, V6, P1605
  • [4] CHEN Y, 2009, ICIC EXPRESS LETT, V3, P213
  • [5] Dunn J. C., 1973, Journal of Cybernetics, V3, P32, DOI 10.1080/01969727308546046
  • [6] Rapid prototyping of an EEG-based brain-computer interface (BCI)
    Guger, C
    Schlögl, A
    Neuper, C
    Walterspacher, D
    Strein, T
    Pfurtscheller, G
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2001, 9 (01) : 49 - 58
  • [7] Hema CR, 2009, INT J INNOV COMPUT I, V5, P1819
  • [8] Automatic seamless mosaicing of microscopic images: enhancing appearance with colour degradation compensation and wavelet-based blending
    Hsu, W. -Y.
    Poon, W. -F. Paul
    Sun, Y. -N.
    [J]. JOURNAL OF MICROSCOPY-OXFORD, 2008, 231 (03): : 408 - 418
  • [9] Wavelet-based fractal features with active segment selection: Application to single-trial EEG data
    Hsu, Wei-Yen
    Lin, Chou-Ching
    Ju, Ming-Shaung
    Sun, Yung-Nien
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2007, 163 (01) : 145 - 160
  • [10] EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features
    Hsu, Wei-Yen
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2010, 189 (02) : 295 - 302