Generalized Fractional Integral Operators on Generalized Local Morrey Spaces

被引:12
作者
Guliyev, V. S. [1 ,2 ]
Ismayilova, A. F. [2 ]
Kucukaslan, A. [3 ]
Serbetci, A. [3 ]
机构
[1] Ahi Evran Univ, Dept Math, TR-40100 Kirsehir, Turkey
[2] Azerbaijan Acad Sci, Inst Math & Mech, Baku 1141, Azerbaijan
[3] Ankara Univ, Dept Math, TR-06100 Ankara, Turkey
关键词
SUBLINEAR-OPERATORS; MAXIMAL OPERATOR; COMMUTATORS; BOUNDEDNESS;
D O I
10.1155/2015/594323
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the continuity properties of the generalized fractional integral operator I-rho on the generalized local Morrey spaces LMp,phi{x0} and generalized Morrey spaces M-p,M-phi. We find conditions on the triple (phi(1), phi(2), rho) which ensure the Spanne-type boundedness of I-rho from one generalized local Morrey space LMp,phi 1{x0} to another LMq,phi 2{x0}, 1 < p < q < infinity, and from LM1,phi 1{x0} to the weak space WLMq,phi 2{x0} 1 < q < infinity. We also find conditions on the pair (phi, rho) which ensure the Adams-type boundedness of I-rho from M-p,phi(1/p) to M-q,phi(1/q) for 1 < p < q < 8 and from M-1,M-phi to WMq,phi 1/q for 1 < q < infinity. In all cases the conditions for the boundedness of I-rho are given in terms of Zygmund-type integral inequalities on (phi(1), phi(2), rho) and (phi, rho), which do not assume any assumption on monotonicity of phi(1) (x, r), phi(2) (x, r), and phi(x, r) in r.
引用
收藏
页数:8
相关论文
共 33 条
[1]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[2]  
Akbulut A, 2012, MATH BOHEM, V137, P27
[3]  
Alvarez J., 2000, COLLECT MATH, V51, P1
[4]  
[Anonymous], 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals
[5]  
[Anonymous], 2013, ADV HARMONIC ANAL OP
[6]  
Beurling A., 1964, Ann. Inst. Fourier, V14, P1, DOI [10.5802/aif.172, DOI 10.5802/AIF.172]
[7]   CHARACTERIZATIONS FOR THE GENERALIZED FRACTIONAL INTEGRAL OPERATORS ON MORREY SPACES [J].
Eridani ;
Gunawan, Hendra ;
Nakai, Eiichi ;
Sawano, Yoshihiro .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02) :761-777
[8]  
Eridani A., 2004, SCI MATH JPN, V60, P539
[9]  
Eridani A., 2002, TAMKANG J MATH, V33, P335
[10]  
Feichtinger H.G., 1984, P C CORTONA 1984 S M, V29, P267