Thermodynamic modeling of the stacking fault energy of austenitic steels

被引:389
作者
Curtze, S. [1 ]
Kuokkala, V. -T. [1 ]
Oikari, A. [2 ]
Talonen, J. [3 ]
Hanninen, H. [2 ]
机构
[1] Tampere Univ Technol, Dept Mat Sci, FI-33101 Tampere, Finland
[2] Aalto Univ, Sch Sci & Technol, Dept Engn Design & Prod, FI-00076 Aalto, Finland
[3] Outokumpu Oyj, FI-02201 Espoo, Finland
关键词
Austenitic steel; Stacking fault energy; Thermodynamic modeling; Electron backscatter diffraction (EBSD); FE-MN SYSTEM; CR-C SYSTEM; MARTENSITIC-TRANSFORMATION; FCC->HCP TRANSFORMATION; ALLOYS; TEMPERATURE; DEPENDENCE; FCC; ANTIFERROMAGNETISM; DEFORMATION;
D O I
10.1016/j.actamat.2010.10.037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The stacking fault energies (SFE) of 10 austenitic steels were determined in the temperature range 50 <= T <= 600 K by thermodynamic modeling of the Fe-Cr-Ni-Mn-Al-Si-Cu-C-N system using a modified Olson and Cohen modeling approach (Olson GB, Cohen M. Metall Trans 1976;7A:1897 [1]). The applied model accounts for each element's contribution to the Gibbs energy, the first-order excess free energies, magnetic contributions and the effect of interstitial nitrogen. Experimental SFE values from X-ray diffraction measurements were used for comparison. The effect of SFE on deformation mechanisms was also studied by electron backscatter diffraction. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1068 / 1076
页数:9
相关论文
共 39 条
[1]   Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys [J].
Allain, S ;
Chateau, JP ;
Bouaziz, O ;
Migot, S ;
Guelton, N .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 387 :158-162
[2]   Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions [J].
Barbier, D. ;
Gey, N. ;
Allain, S. ;
Bozzolo, N. ;
Humbert, M. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 500 (1-2) :196-206
[3]   PARTIAL DISLOCATIONS ON (110) PLANES IN BCC LATTICE + TRANSITION OF FCC INTO BCC LATTICE [J].
BOGERS, AJ ;
BURGERS, WG .
ACTA METALLURGICA, 1964, 12 (02) :255-&
[4]   Effect of fcc antiferromagnetism on martensitic transformation in Fe-Mn-Si based alloys [J].
Chen, SC ;
Chung, CY ;
Yan, CL ;
Hsu, TY .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1999, 264 (1-2) :262-268
[5]   FCC/HCP MARTENSITIC-TRANSFORMATION IN THE FE-MN SYSTEM - EXPERIMENTAL-STUDY AND THERMODYNAMIC ANALYSIS OF PHASE-STABILITY [J].
COTES, S ;
SADE, M ;
GUILLERMET, AF .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1995, 26 (08) :1957-1969
[6]   Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate [J].
Curtze, S. ;
Kuokkala, V. -T. .
ACTA MATERIALIA, 2010, 58 (15) :5129-5141
[7]  
CURTZE S, 2009, C P DYM ASS BRUSS
[8]   MARTENSITE TRANSFORMATION IN STAINLESS STEEL [J].
DASH, J ;
OTTE, HM .
ACTA METALLURGICA, 1963, 11 (10) :1169-&
[9]   SGTE DATA FOR PURE ELEMENTS [J].
DINSDALE, AT .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 1991, 15 (04) :317-425
[10]  
DULIEU D, 1964, ISI S SR86, V140