THE CLASSIFICATION OF 3/2-TRANSITIVE PERMUTATION GROUPS AND 1/2-TRANSITIVE LINEAR GROUPS

被引:9
作者
Liebeck, Martin W. [1 ]
Praeger, Cheryl E. [2 ]
Saxl, Jan [3 ]
机构
[1] Imperial Coll, Dept Math, London SW7 2BZ, England
[2] Univ Western Australia, Sch Math & Stat, Perth, WA 6009, Australia
[3] Univ Cambridge, CMS, DPMMS, Wilberforce Rd, Cambridge CB3 0WB, England
基金
澳大利亚研究理事会;
关键词
D O I
10.1090/proc/13243
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear group G <= GL(V), where V is a finite vector space, is called 1/2-transitive if all the G-orbits on the set of nonzero vectors have the same size. We complete the classification of all the 1/2-transitive linear groups. As a consequence we complete the determination of the finite 3/2-transitive permutation groups - the transitive groups for which a point-stabilizer has all its nontrivial orbits of the same size. We also determine the (k + 1/2)-transitive groups for integers k >= 2.
引用
收藏
页码:5023 / 5037
页数:15
相关论文
共 16 条
[1]   ON THE MAXIMAL-SUBGROUPS OF THE FINITE CLASSICAL-GROUPS [J].
ASCHBACHER, M .
INVENTIONES MATHEMATICAE, 1984, 76 (03) :469-514
[2]  
Aschbacher M., 2000, CAMBRIDGE STUDIES AD, V10, DOI 10.1017/CBO9781139175319
[3]   THE CLASSIFICATION OF ALMOST SIMPLE 3/2-TRANSITIVE GROUPS [J].
Bamberg, John ;
Giudici, Michael ;
Liebeck, Martin W. ;
Praeger, Cheryl E. ;
Saxl, Jan .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (08) :4257-4311
[4]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[5]  
Conway J. H., 1985, ATLAS of finite groups
[6]  
Dixon J.D., 1996, Permutation Groups, V163, DOI DOI 10.1007/978-1-4612-0731-3
[7]  
Dornhoff L., 1971, PURE APPL MATH, V7
[8]   ARITHMETIC RESULTS ON ORBITS OF LINEAR GROUPS [J].
Giudici, Michael ;
Liebeck, Martin W. ;
Praeger, Cheryl E. ;
Saxl, Jan ;
Pham Huu Tiep .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (04) :2415-2467
[9]  
Hardy G. H., 1979, An introduction to the theory of numbers, VFourth
[10]   HOMOGENEOUS DESIGNS AND GEOMETRIC LATTICES [J].
KANTOR, WM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 38 (01) :66-74