Four families of projectively flat Finsler metrics with K=1 and their non-Riemannian curvature properties

被引:0
作者
Tayebi, A. [1 ]
Razgordani, M. [1 ]
机构
[1] Univ Qom, Fac Sci, Dept Math, Qom, Iran
关键词
Locally projectively flat metric; Flag curvature; Generalized 4-th root metric; Weakly Einstein metric; S-curvature; -curvature; Projective Ricci curvature; HILBERTS 4TH PROBLEM; TH ROOT METRICS; S-CURVATURE; BETA)-METRICS; GEOMETRY; (ALPHA; SPACES; LINES;
D O I
10.1007/s13398-017-0443-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the first time, Bryant introduced a locally projectively flat non- Riemannian Finsler metric with flag curvature K = 1 on S2. In this paper, we construct four new nonRiemannian families of projectively flat Finsler metrics with flag curvature K = 1. These metrics belong to the class of generalized 4- th root metrics. The class of generalized 4- th root metrics is an extension of the class of 4- th root metrics which has close relations with General Relativity and Seismic Ray Theory. In this class, we characterize Finsler metrics of isotropic flag curvature. We find the necessary and sufficient condition under which a metric in this class be weakly Einstein. In this class, we characterize Finsler metrics of isotropic S- curvature and almost vanishing - curvature. Finally, we find the necessary and sufficient condition under which a Finsler metric in this class has vanishing projective Ricci curvature.
引用
收藏
页码:1463 / 1485
页数:23
相关论文
共 37 条
[1]   PLANES FOR WHICH LINES ARE SHORTEST PATHS BETWEEN POINTS [J].
ALEXANDER, R .
ILLINOIS JOURNAL OF MATHEMATICS, 1978, 22 (02) :177-190
[2]   NOTE ON PSEUDO-METRICS ON PLANE [J].
AMBARTZUMIAN, RV .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 37 (02) :145-155
[3]  
Antonelli P.L., 1993, THEORY SPRAYS FINSLE
[4]   Finsler metrics of constant positive curvature on the Lie group S3 [J].
Bao, D ;
Shen, Z .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 :453-467
[6]  
BERWALD L, 1929, MONATSH MATH PHYS, V36, P315
[7]  
Blaschke W, 1936, ABH MATH SEM HAMBURG, V11, P359, DOI 10.1007/BF02940732
[8]  
BRYANT R., 1997, Selecta Mathematica, V3, P161
[9]  
Bryant R., 1996, Contemp. Math, V196, P27
[10]  
Crampin M, 2011, HOUSTON J MATH, V37, P369