Optimal non-proportional reinsurance control

被引:63
作者
Hipp, Christian [2 ]
Taksar, Michael [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Karlsruhe, Lehrstuhl Versicherungswissensch, D-76133 Karlsruhe, Germany
关键词
Ruin probabilities; XL-reinsurance; Controlled diffusions; Cramer-Lundberg model; Hamilton-Jacobi-Bellman equation; Optimal investment control;
D O I
10.1016/j.insmatheco.2010.04.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper deals with the problem of ruin probability minimization under various investment control and reinsurance schemes. We first look at the minimization of ruin probabilities in the models in which the surplus process is a continuous diffusion process in which we employ stochastic control to find the optimal policies for reinsurance and investment. We then focus on the case in which the surplus process is modeled via a classical Lundberg process, i.e. the claims process is compound Poisson. There, the optimal reinsurance policy is derived from the Hamilton-Jacobi-Bellman equation. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:246 / 254
页数:9
相关论文
共 11 条
[1]   EQUILIBRIUM IN A REINSURANCE MARKET [J].
BORCH, K .
ECONOMETRICA, 1962, 30 (03) :424-444
[2]   Optimal investment for investors with state dependent income, and for insurers [J].
Hipp, C ;
Plum, M .
FINANCE AND STOCHASTICS, 2003, 7 (03) :299-321
[3]  
HIPP C, 2003, ASTIN BULL, P193
[4]  
Klebaner FimaC., 2006, INTRO STOCHASTIC CAL, Vsecond
[5]  
Mack Th., 1997, Schadenversicherungsmathematik
[6]  
MARKUSSEN C, 2007, OPTIMAL DYNAMIC REIN
[7]  
Oksendal B., 1999, STOCHASTIC DIFFERENT
[8]  
OKSENDAL B, 2006, APPL STOCHASTIC CONT
[9]  
Pesonen Martti., 1984, SCAND ACTUAR J, V2, P65, DOI [10.1080/03461238.1984.10413754, DOI 10.1080/03461238.1984.10413754]
[10]  
Rolski T., 1999, WILEY PROB STAT