Deep Learning for Image Super-Resolution: A Survey

被引:1208
作者
Wang, Zhihao [1 ]
Chen, Jian [2 ]
Hoi, Steven C. H. [3 ,4 ]
机构
[1] South China Univ Technol, Guangzhou, Guangdong, Peoples R China
[2] South China Univ Technol, Sch Software Engn, Guangzhou, Guangdong, Peoples R China
[3] Salesforce Com, Salesforce Res Asia, Singapore 038985, Singapore
[4] Singapore Management Univ, Sch Informat Syst, Singapore 178902, Singapore
关键词
Deep learning; Degradation; Animals; Benchmark testing; Measurement; Image super-resolution; deep learning; convolutional neural networks (CNN); Generative adversarial nets (GAN); VIDEO SUPERRESOLUTION; QUALITY ASSESSMENT; RESOLUTION; NETWORKS; CLASSIFICATION;
D O I
10.1109/TPAMI.2020.2982166
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image Super-Resolution (SR) is an important class of image processing techniqueso enhance the resolution of images and videos in computer vision. Recent years have witnessed remarkable progress of image super-resolution using deep learning techniques. This article aims to provide a comprehensive survey on recent advances of image super-resolution using deep learning approaches. In general, we can roughly group the existing studies of SR techniques into three major categories: supervised SR, unsupervised SR, and domain-specific SR. In addition, we also cover some other important issues, such as publicly available benchmark datasets and performance evaluation metrics. Finally, we conclude this survey by highlighting several future directions and open issues which should be further addressed by the community in the future.
引用
收藏
页码:3365 / 3387
页数:23
相关论文
共 214 条
[1]   NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study [J].
Agustsson, Eirikur ;
Timofte, Radu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1122-1131
[2]   Image Super-resolution via Progressive Cascading Residual Network [J].
Ahn, Namhyuk ;
Kang, Byungkon ;
Sohn, Kyung-Ah .
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, :904-912
[3]   Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network [J].
Ahn, Namhyuk ;
Kang, Byungkon ;
Sohn, Kyung-Ah .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :256-272
[4]   Image up-sampling using total-variation regularization with a new observation model [J].
Aly, HA ;
Dubois, E .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (10) :1647-1659
[5]   NTIRE 2018 Challenge on Image Dehazing: Methods and Results [J].
Ancuti, Cosmin ;
Ancuti, Codruta O. ;
Timofte, Radu ;
Van Gool, Luc ;
Zhang, Lei ;
Yang, Ming-Hsuan ;
Patel, Vishal M. ;
Zhang, He ;
Sindagi, Vishwanath A. ;
Zhao, Ruhao ;
Ma, Xiaoping ;
Qin, Yong ;
Jia, Limin ;
Friedel, Klaus ;
Ki, Sehwan ;
Sim, Hyeonjun ;
Choi, Jae-Seok ;
Kim, Soo Ye ;
Seo, Soomin ;
Kim, Saehun ;
Kim, Munchurl ;
Mondal, Ranjan ;
Santra, Sanchayan ;
Chanda, Bhabatosh ;
Liu, Jinlin ;
Mei, Kangfu ;
Li, Juncheng ;
Luyao ;
Fang, Faming ;
Jiang, Aiwen ;
Qu, Xiaochao ;
Liu, Ting ;
Wang, Pengfei ;
Sun, Biao ;
Deng, Jiangfan ;
Zhao, Yuhang ;
Hong, Ming ;
Huang, Jingying ;
Chen, Yizhi ;
Chen, Erin ;
Yu, Xiaoli ;
Wu, Tingting ;
Genc, Anil ;
Engin, Deniz ;
Ekenel, Hazim Kemal ;
Liu, Wenzhe ;
Tong, Tong ;
Li, Gen ;
Gao, Qinquan ;
Li, Zhan .
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, :1004-1014
[6]  
[Anonymous], 2017, P 34 INT C MACH LEAR
[7]  
[Anonymous], 2017, IEEE I CONF COMP VIS, DOI DOI 10.1109/ICCV.2017.244
[8]   Contour Detection and Hierarchical Image Segmentation [J].
Arbelaez, Pablo ;
Maire, Michael ;
Fowlkes, Charless ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :898-916
[9]   Beyond Deep Residual Learning for Image Restoration: Persistent Homology-Guided Manifold Simplification [J].
Bae, Woong ;
Yoo, Jaejun ;
Ye, Jong Chul .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1141-1149
[10]   SOD-MTGAN: Small Object Detection via Multi-Task Generative Adversarial Network [J].
Bai, Yancheng ;
Zhang, Yongqiang ;
Ding, Mingli ;
Ghanem, Bernard .
COMPUTER VISION - ECCV 2018, PT XIII, 2018, 11217 :210-226