Study of perturbed Lotka-Volterra systems via Abelian integrals

被引:3
作者
Gasull, A [1 ]
Guillamon, A [1 ]
Li, CZ [1 ]
Zhang, ZF [1 ]
机构
[1] BEIJING UNIV,DEPT MATH,BEIJING 100871,PEOPLES R CHINA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jmaa.1996.0109
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Lotka-Volterra system as a Hamiltonian one and study a special perturbation of it. For this perturbed system we get results on the number of limit cycles. The main tools used are Abelian integrals and degenerate Hopf bifurcation. (C) 1996 Academic Press, Inc.
引用
收藏
页码:703 / 728
页数:26
相关论文
共 17 条
[1]  
Andronov AA, 1973, Theory of bifurcations of dynamic systems on a plane
[2]  
[Anonymous], 1971, STRUGGLE EXISTENCE
[3]  
[Anonymous], 1973, Stability and complexity in model ecosystems
[4]   UNIQUENESS OF PERIODIC-ORBITS OF SOME VECTOR-FIELDS WITH CODIMENSION 2 SINGULARITIES [J].
CHOW, SN ;
LI, CZ ;
WANG, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 77 (02) :231-253
[5]  
CIMA A, IN PRESS ROCKY MOUNT
[6]  
DRACHMAN B, 1987, J REINE ANGEW MATH, V382, P165
[7]   GLOBAL STABILITY OF PREDATOR-PREY INTERACTIONS [J].
HARRISON, GW .
JOURNAL OF MATHEMATICAL BIOLOGY, 1979, 8 (02) :159-171
[9]  
Kincaid D., 1991, NUMERICAL ANAL
[10]  
Kolmogorov A., 1936, Gi. Inst. Ital. Attuari, V7, P74