Tuning Vertical Electron Transfer on Graphene Bilayer Electrochemical Devices

被引:7
作者
Sanches, Natalia M. [1 ]
Hassan, Ayaz [1 ]
Mattioli, Isabela A. [1 ]
Macedo, Lucyano J. A. [1 ]
Sedenho, Graziela C. [1 ]
Crespilho, Frank N. [1 ]
机构
[1] Univ Sao Paulo, Sao Carlos Inst Chem, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
defects in graphene; electrochemical oxidation; electron transfer; graphene bilayer; FIELD-EFFECT TRANSISTOR; CVD-GROWN GRAPHENE; OXIDE; DEFECTS; PERFORMANCE; MONOLAYER; CHEMISTRY;
D O I
10.1002/admi.202100550
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pristine graphene electrodes exhibit slow vertical (off-plane) heterogeneous electron transfer (HET) rate that limits their application in electrochemical devices. This can be minimized by generating defects in the graphene structure. However, these defects adversely affect the horizontal (in-plane) electrical conductivity characteristic to graphene. Here, the fabrication of graphene bilayer devices with modulated vertical HET is reported. Strategically, the upper sheet is used as a sacrificial layer for the introduction of extrinsic defects via electrochemical oxidation while preserving the structure of the graphene underlying layer. For [Fe(CN)(6)](4-)/[Fe(CN)(6)](3-) vertical HET in solution-phase, oxidized electrodes present a very low charge transfer resistance. For vertical HET in surface adsorbed ferrocene on oxidized electrodes, the vertical HET rate constant is about five times higher than on pristine electrodes. Based on data from scattering-type scanning near-field optical microscopy (s-SNOM) and Raman spectroscopy, the improvement on the electrochemical properties is attributed to the defects that are incorporated in the upper layer graphene lattice. This fundamental study on the atomic behavior of defects and stacking layers of graphene provides a new strategic design of graphene-based devices with superior electrochemical performance.
引用
收藏
页数:10
相关论文
共 55 条
[1]   Properties of graphene: a theoretical perspective [J].
Abergel, D. S. L. ;
Apalkov, V. ;
Berashevich, J. ;
Ziegler, K. ;
Chakraborty, Tapash .
ADVANCES IN PHYSICS, 2010, 59 (04) :261-482
[2]   The Effect of Electrochemical Pretreatment on the Sensing Performance of Single Walled Carbon Nanotubes [J].
Alwarappan, Subbiah ;
Prabhulkar, Shradha ;
Durygin, Andriy ;
Li, Chen-Zhong .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (05) :2991-2996
[3]   Graphene and its electrochemistry - an update [J].
Ambrosi, Adriano ;
Chua, Chun Kiang ;
Latiff, Naziah Mohamad ;
Loo, Adeline Huiling ;
Wong, Colin Hong An ;
Eng, Alex Yong Sheng ;
Bonanni, Alessandra ;
Pumera, Martin .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (09) :2458-2493
[4]   Electrochemistry of folded graphene edges [J].
Ambrosi, Adriano ;
Bonanni, Alessandra ;
Pumera, Martin .
NANOSCALE, 2011, 3 (05) :2256-2260
[5]   Graphene/h-BN plasmon-phonon coupling and plasmon delocalization observed by infrared nano-spectroscopy [J].
Barcelos, Ingrid D. ;
Cadore, Alisson R. ;
Campos, Leonardo C. ;
Malachias, Angelo ;
Watanabe, K. ;
Taniguchi, T. ;
Maia, Francisco C. B. ;
Freitas, Raul ;
Deneke, Christoph .
NANOSCALE, 2015, 7 (27) :11620-11625
[6]  
Barsoukov E., 2013, IMPEDANCE SPECTROSCO
[7]   Electro-oxidized Monolayer CVD Graphene Film Transducer for Ultrasensitive Impedimetric DNA Biosensor [J].
Benvidi, Ali ;
Saucedo, Nuvia M. ;
Ramnani, Pankaj ;
Villarreal, Claudia ;
Mulchandani, Ashok ;
Tezerjani, Marzieh Dehghan ;
Jahanbani, Shahriar .
ELECTROANALYSIS, 2018, 30 (08) :1783-1792
[8]   Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene [J].
Brownson, Dale A. C. ;
Varey, Sarah A. ;
Hussain, Fiazal ;
Haigh, Sarah J. ;
Banks, Craig E. .
NANOSCALE, 2014, 6 (03) :1607-1621
[9]   The electrochemistry of CVD graphene: progress and prospects [J].
Brownson, Dale A. C. ;
Banks, Craig E. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (23) :8264-8281
[10]   Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar MicroRNA detection [J].
Cai, Bingjie ;
Huang, Le ;
Zhang, Hong ;
Sun, Zhongyue ;
Zhang, Zhiyong ;
Zhang, Guo-Jun .
BIOSENSORS & BIOELECTRONICS, 2015, 74 :329-334