Thin-diameter polarization maintaining hollow-core photonic bandgap fiber for fiber optic gyroscope

被引:12
作者
Cai, Hongbo [1 ,2 ]
Yu, Fei [1 ,3 ]
Liao, MeiSong [1 ]
Li, Xia [1 ]
Wang, Longfei [1 ]
Kuan, Peiwen [1 ]
Bi, Wanjun [1 ]
Wang, Tianxing [1 ]
Gao, Weiqing [4 ]
Hu, Lili [1 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Key Lab Mat High Power Laser, Shanghai 201800, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, 1 Sublane Xiangshan, Hangzhou 310024, Peoples R China
[4] Hefei Univ Technol, Sch Elect Sci & Appl Phys, Hefei 230009, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金; 国家重点研发计划;
关键词
Fiber design; Fiber optic gyroscope; Hollow-core photonic bandgap fibers; Thin-diameter; Polarization maintaining; Simulation; CRYSTAL FIBER;
D O I
10.1016/j.yofte.2020.102141
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
PBGFs (photonic bandgap fibers) are superior to traditional optical fiber in terms of reduced optical nonlinearity, enhanced thermal stability, and insensitivity against radiation and magnetic field, which are key to improve the performance of fiber optical gyroscopes (FOG). For application in FOG, PBGF of small outer diameter is preferred to effectively increase the cavity length while maintaining the volume of device. In this paper, a special design of PBGFs is explored and a loss of about 15 dB/km at 1550 nm wavelength with birefringence of 1.2 x 10(-4) can be obtained when the bare fiber outer diameter is 80 mu m. This small outer diameter PBG design shows a promising potential for FOG application.
引用
收藏
页数:8
相关论文
共 30 条
[1]  
Ani AB, 2016, INT C COMP ELEC ENG, P243, DOI 10.1109/ICECE.2016.7853901
[2]   Three-dimensional perfectly matched layer for the absorption of electromagnetic waves [J].
Berenger, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 127 (02) :363-379
[3]   BIAS DRIFT REDUCTION IN POLARIZATION-MAINTAINING FIBER GYROSCOPE [J].
CARRARA, SLA ;
KIM, BY ;
SHAW, HJ .
OPTICS LETTERS, 1987, 12 (03) :214-216
[4]   Highly birefringent hollow-core photonic bandgap fiber [J].
Chen, X ;
Li, MJ ;
Venkataraman, N ;
Gallagher, MT ;
Wood, WA ;
Crowley, AM ;
Carberry, JP ;
Zenteno, LA ;
Koch, KW .
OPTICS EXPRESS, 2004, 12 (16) :3888-3893
[5]   Single-mode photonic band gap guidance of light in air [J].
Cregan, RF ;
Mangan, BJ ;
Knight, JC ;
Birks, TA ;
Russell, PS ;
Roberts, PJ ;
Allan, DC .
SCIENCE, 1999, 285 (5433) :1537-1539
[6]  
Diggonet M., 2010, SPIENEWSROOM
[7]  
Fini J. M., 2014, NATURE COMMUNICATION, V5, P1, DOI DOI 10.1038/NC0MMS6085
[8]   Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss [J].
Frosz, M. H. ;
Nold, J. ;
Weiss, T. ;
Stefani, A. ;
Babic, F. ;
Rammler, S. ;
Russell, P. St. J. .
OPTICS LETTERS, 2013, 38 (13) :2215-2217
[9]   MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers [J].
Jasion, G. T. ;
Shrimpton, J. S. ;
Chen, Y. ;
Bradley, T. ;
Richardson, D. J. ;
Poletti, F. .
OPTICS EXPRESS, 2015, 23 (01) :312-329
[10]   Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers [J].
Johnson, SG ;
Ibanescu, M ;
Skorobogatiy, M ;
Weisberg, O ;
Engeness, TD ;
Soljacic, M ;
Jacobs, SA ;
Joannopoulos, JD ;
Fink, Y .
OPTICS EXPRESS, 2001, 9 (13) :748-779