Positivity of lyapunov exponents for a continuous matrix-valued anderson model

被引:6
作者
Boumaza, Hakim [1 ]
机构
[1] Univ Paris 07, Inst Math Jussieu, F-75251 Paris, France
关键词
Lyapunov exponents; Anderson model;
D O I
10.1007/s11040-007-9023-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a continuous matrix-valued Anderson-type model. Both leading Lyapunov exponents of this model are proved to be positive and distinct for all energies in ( 2,+ infinity) except those in a discrete set, which leads to absence of absolutely continuous spectrum in ( 2,+ infinity). This result is an improvement of a previous result with Stolz. The methods, based upon a result by Breuillard and Gelander on dense subgroups in semisimple Lie groups, and a criterion by Goldsheid and Margulis, allow for singular Bernoulli distributions.
引用
收藏
页码:97 / 122
页数:26
相关论文
共 14 条
[1]  
Bougerol P., 1985, Products of Random Matrices with Applications to Schrodinger Operators, V8
[2]  
BOUMAZA H, 2007, ELECT J DIFFERENTIAL, P1
[3]   On dense free subgroups of Lie groups [J].
Breuillard, E ;
Gelander, T .
JOURNAL OF ALGEBRA, 2003, 261 (02) :448-467
[4]  
Carmona R., 1990, SPECTRAL THEORY RAND, DOI 10.1007/978-1-4939-0512-6_4
[5]  
Damanik D, 2002, DUKE MATH J, V114, P59
[6]   LYAPUNOV INDEXES OF A PRODUCT OF RANDOM MATRICES [J].
GOLDSHEID, IY ;
MARGULIS, GA .
RUSSIAN MATHEMATICAL SURVEYS, 1989, 44 (05) :11-71
[7]   ON A CLASS OF RANDOM SCHRODINGER-OPERATORS [J].
KIRSCH, W .
ADVANCES IN APPLIED MATHEMATICS, 1985, 6 (02) :177-187
[8]  
KIRSCH W, 2003, MARKOV PROCESS RELAT, V9, P687
[9]   LOCALIZATION FOR THE ANDERSON MODEL ON A STRIP WITH SINGULAR POTENTIALS [J].
KLEIN, A ;
LACROIX, J ;
SPEIS, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 94 (01) :135-155
[10]   STOCHASTIC SCHRODINGER-OPERATORS AND JACOBI MATRICES ON THE STRIP [J].
KOTANI, S ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 119 (03) :403-429